0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Direct and Inverse Finite-Dimensional Spectral Problems on Graphs (Hardcover, 1st ed. 2020): Manfred Moeller, Vyacheslav... Direct and Inverse Finite-Dimensional Spectral Problems on Graphs (Hardcover, 1st ed. 2020)
Manfred Moeller, Vyacheslav Pivovarchik
R3,663 Discovery Miles 36 630 Ships in 10 - 15 working days

Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications (Hardcover, 2015 ed.): Manfred Moeller,... Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications (Hardcover, 2015 ed.)
Manfred Moeller, Vyacheslav Pivovarchik
R3,472 R2,221 Discovery Miles 22 210 Save R1,251 (36%) Ships in 12 - 19 working days

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A- I for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader's background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.

Direct and Inverse Finite-Dimensional Spectral Problems on Graphs (Paperback, 1st ed. 2020): Manfred Moeller, Vyacheslav... Direct and Inverse Finite-Dimensional Spectral Problems on Graphs (Paperback, 1st ed. 2020)
Manfred Moeller, Vyacheslav Pivovarchik
R3,632 Discovery Miles 36 320 Ships in 10 - 15 working days

Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications (Paperback, Softcover reprint of the... Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications (Paperback, Softcover reprint of the original 1st ed. 2015)
Manfred Moeller, Vyacheslav Pivovarchik
R2,710 Discovery Miles 27 100 Ships in 10 - 15 working days

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A- I for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader's background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The West Coast - From Melkbos To The…
Leon Nell Paperback  (2)
R370 R342 Discovery Miles 3 420
Biomolecular Interfaces - Interactions…
Ariel Fernandez Stigliano Hardcover R3,243 R2,179 Discovery Miles 21 790
The Love Song Of Andre P. Brink - A…
Leon De Kock Paperback  (1)
R435 Discovery Miles 4 350
Circadian Rhythms and Biological Clocks…
Amita Sehgal Hardcover R5,473 R4,585 Discovery Miles 45 850
Afterlife - Life beyond death for the…
David Peters Paperback R270 Discovery Miles 2 700
The Music Technology Cookbook…
Adam Patrick Bell Hardcover R3,301 Discovery Miles 33 010
Wild Track - Sound, Text and the Idea of…
SeƔn Street Hardcover R3,198 Discovery Miles 31 980
The Magnet Motor - Making Free Energy…
Patrick Weinand Hardcover R1,235 R1,044 Discovery Miles 10 440
Cooking with Kim Bagley - A South…
Kim Bagley Paperback R390 R339 Discovery Miles 3 390
A Heart on Fire - Living as a Mystic in…
Annika Spalde Paperback R414 Discovery Miles 4 140

 

Partners