Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
? J. Andersen Niels Bohr Institute for Astronomy Physics and Geophysics Astronomical Observatory Copenhagen [email protected] The development of astronomy worldwide begins at the roots: Already from childhood, humans of all nations and civilizations seem to share an innate fascination with the sky. Yet, people in different regions of the world have vastly different possibilities for pursuing this interest. In wealthy, industrialised societies the way is open to a school or higher education in science, possibly leading to a career in astronomy or basic or applied space science for the benefit of the country as well as the individual. In other regions, neither the financial nor the trained human resources are sufficient to offer that avenue to the future of the young generation, or those intellectual resources to the development of their country. This book addresses ways and means by which these obstacles can be, if not fully overcome, then at least significantly reduced.
ROSAT Observations G. HASINGER Max-Planck-Institut flir extraterrestrische Physik, D-85740 Garching, Germany Abstract. This review describes the most recent advances in the study of the extragalactic soft X-ray background and what we can learn about its constituents. The deepest pointed observations with the ROSAT PSPC are discussed. The logN-logS relation is presented, which reaches to the faintest X-ray fluxes and to the highest AGN surface densities ever achieved. The N(>S) relation shows a 2 density in excess of 400 deg- at the faintest fluxes and a flattening below the Einstein Deep Survey limit. About 60% of the extragalactic background has been resolved in the deepest field. Detailed source spectra and first optical and radio identifications will be discussed. The results are put into perspective of the higher energy X -ray background. Key words: X-rays, background radiations, active galactic nuclei. 1. Introduction The extragalactic X-ray background (XRB), discovered about 30 years ago, has been studied extensively with many X-ray experiments, in particular with the satel lites HEAO I and II (see ego Boldt 1987) and with ROSAT (e. g. Hasinger et aI. , 1993). Figure 1 shows a compilation of some of the most recent spectral measure ments for the X-ray background. Over the energy range from 3 to about 100 keY its spectrum can be well approximated by an optically thin thermal bremsstrahlung model with kT ~ 40 keY, while at lower X-ray energies a steepening into a new component has been observed observed (e. g.
This book was conceived to commemorate the continuing success of the guest observer program for the International Ultraviolet Explorer (IUE) satellite observatory. It is also hoped that this volume will serve as a useful tutorial for those pursuing research in related fields with future space observatories. As the IUE has been the product of the three-way collaboration between the U.S. National Aeronautics and Space Administration (NASA), European Space Agency (ESA) and the British Engineering and Research Council (SERC), so is this book the fruit of the collaboration of the American and European participants in the IUE. As such, it is a testimony to timely international cooperation and sharing of resources that open up new possibilities. The IUE spacecraft was launched on the 26th of January in 1978 into a geosynchronous orbit over the Atlantic Ocean. The scientific operations of the IUE are performed for 16 hours a day from Goddard Space Flight Center in Greenbelt, Maryland, U.S.A, and for 8 hours a day from ESA Villafranca Satellite Tracking Station near Madrid, Spain.
ROSAT Observations G. HASINGER Max-Planck-Institut flir extraterrestrische Physik, D-85740 Garching, Germany Abstract. This review describes the most recent advances in the study of the extragalactic soft X-ray background and what we can learn about its constituents. The deepest pointed observations with the ROSAT PSPC are discussed. The logN-logS relation is presented, which reaches to the faintest X-ray fluxes and to the highest AGN surface densities ever achieved. The N(>S) relation shows a 2 density in excess of 400 deg- at the faintest fluxes and a flattening below the Einstein Deep Survey limit. About 60% of the extragalactic background has been resolved in the deepest field. Detailed source spectra and first optical and radio identifications will be discussed. The results are put into perspective of the higher energy X -ray background. Key words: X-rays, background radiations, active galactic nuclei. 1. Introduction The extragalactic X-ray background (XRB), discovered about 30 years ago, has been studied extensively with many X-ray experiments, in particular with the satel lites HEAO I and II (see ego Boldt 1987) and with ROSAT (e. g. Hasinger et aI. , 1993). Figure 1 shows a compilation of some of the most recent spectral measure ments for the X-ray background. Over the energy range from 3 to about 100 keY its spectrum can be well approximated by an optically thin thermal bremsstrahlung model with kT ~ 40 keY, while at lower X-ray energies a steepening into a new component has been observed observed (e. g.
Modern astrophysics has evolved early phases of discovery and classification to a physics-oriented quest for answers to fundamental problems from cosmology to the origin and diversity of life-sustainable systems in the Universe. Future progress in modern astrophysics requires access to the electromagnetic spectrum in the broadest energy range. This book describes the fundamental problems in modern astrophysics that cannot progress without easy and wide-spread access to modern UV instrumentation.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|