![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
It is evident, that for a number of ecological and technical
problems in rivers and lakes a better knowledge of sediment
transport and sedimentation is needed together with the ability to
predict and simulate sediment behaviour. On the other hand, a
stagnation of research in these topics could be observed in the
last decades. At the Symposium an attempt was made to present new
results in mathematics and natural sciences relevant for the
sediment problem. New strategies were discussed to tackle the
complexity of the problem. Basic theoretical research and
laboratory experiments alone are incomplete without a feedback from
field observations and measurements. For that reason well-known
researchers from both basic and engineering sciences were invited.
The Second Monte Verita Colloquium Fundamental Problematic Issues in Turbu lence was held in Monte Verita, Switzerland, on March 23-27, 1998. The main goal of the Colloquium was to bring together in the relaxed atmo sphere of Monte Verita a group of leading scientists (consisting of representatives of different generations) and to discuss informally and free of the influence of funding agencies and/or other "politics" of nonscientific nature the basic issues of turbulence. The intention was to put major emphasis on the exposition of the problematic aspects and discussion(s) - not mere reporting of results, i. e. not hav ing just one more meeting. For this purpose it was originally thought to leave all the afternoons free of formal presentations at all. However, this intention became unrealistic due to a number of reasons, and, in the first place, due to strong pres sure from various parts of the scientific community and non-scientific constraints to broaden the scope and to increase the number of participants as compared to the First Colloquium held in 1991. This resulted in a considerable reduction of time for discussions. Nevertheless, the remaining time for discussions was much larger than usually allocated at scientific conferences. On the scientific side the main idea was to bring together scientists work ing in turbulence from different fields, such as mathematics, physics, engineering and others. In this respect the Colloquium was definitely very successful and re sulted in a number of interesting interactions and contacts."
Over-pumping of aquifers is a worldwide problem, mainly caused by agricultural water use. Among its consequences are the falling dry of streams and wetlands, soil subsidence, die-off of phreatophytic vegetation, saline water intrusion, increased pumping cost and loss of storage needed for drought relief. Stopping or reversing the trend requires management interventions. The North China Plain serves as an example. A management system is set up for a typical county. It contains three components: monitoring, decision support based on modelling, and implementation in the field. Besides all monitoring data, the decision support module contains an irrigation calculator, a box model, and a distributed groundwater model to project the outcomes of different water allocation scenarios. In view of grain security, a solution combines an adaptation of the cropping system with imports of surface water from the South. The Open Access book does not only describe the problem and the path to its solution. It also gives access to nine manuals concerning methods used. They include computer programs and the game Save the Water. The Chinese experience should be of considerable interest to other regions in the world which suffer from over-pumping of aquifers.
The thermal use of the shallow subsurface is increasingly being promoted and implemented as one of many promising measures for saving energy. A series of questions arises concerning the design and management of underground and groundwater heat extraction systems, such as the sharing of the thermal resource and the assessment of its long-term potential. For the proper design of thermal systems it is necessary to assess their impact on underground and groundwater temperatures. Thermal Use of Shallow Groundwater introduces the theoretical fundamentals of heat transport in groundwater systems, and discusses the essential thermal properties. It presents a complete overview of analytical and numerical subsurface heat transport modeling, providing a series of mathematical tools and simulation models based on analytical and numerical solutions of the heat transport equation. It is illustrated with case studies from Austria, Germany, and Switzerland of urban thermal energy use, and heat storage and cooling. This book gives a complete set of analytical solutions together with MATLAB(r) computer codes ready for immediate application or design. It offers a comprehensive overview of the state of the art of analytical and numerical subsurface heat transport modeling for students in civil or environmental engineering, engineering geology, and hydrogeology, and also serves as a reference for industry professionals.
A collection of contributions on a variety of mathematical, physical and engineering subjects related to turbulence. Topics include mathematical issues, control and related problems, observational aspects, two- and quasi-two-dimensional flows, basic aspects of turbulence modeling, statistical issues and passive scalars.
This volume contains 20 contributions to the 1st GAMM-Seminar at ICA Stuttgart, which was held in Stuttgart, October 12 - 13, 1995. In the field of environmental sciences, numerical procedures for the simulation of ecological problems are growing increasingly topical. The solution of typical problems in environmental research is closely connected with numerical supercomputing. The main subject of the seminar was the modeling and numerical simulation of ground water and soil water. Further topics were multi-scale modeling, special discretization schemes, adaptivity, multi-grid methods, heterogenity, parameter identification, homogenization, density driven groundwater flow, and coupling of transport and chemistry.
Over-pumping of aquifers is a worldwide problem, mainly caused by agricultural water use. Among its consequences are the falling dry of streams and wetlands, soil subsidence, die-off of phreatophytic vegetation, saline water intrusion, increased pumping cost and loss of storage needed for drought relief. Stopping or reversing the trend requires management interventions. The North China Plain serves as an example. A management system is set up for a typical county. It contains three components: monitoring, decision support based on modelling, and implementation in the field. Besides all monitoring data, the decision support module contains an irrigation calculator, a box model, and a distributed groundwater model to project the outcomes of different water allocation scenarios. In view of grain security, a solution combines an adaptation of the cropping system with imports of surface water from the South. The Open Access book does not only describe the problem and the path to its solution. It also gives access to nine manuals concerning methods used. They include computer programs and the game Save the Water. The Chinese experience should be of considerable interest to other regions in the world which suffer from over-pumping of aquifers.
|
![]() ![]() You may like...
Atlas - The Story Of Pa Salt
Lucinda Riley, Harry Whittaker
Paperback
|