![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
PEM Fuel Cell Failure Mode Analysis presents a systematic analysis of PEM fuel cell durability and failure modes. It provides readers with a fundamental understanding of insufficient fuel cell durability, identification of failure modes and failure mechanisms of PEM fuel cells, fuel cell component degradation testing, and mitigation strategies against degradation. The first several chapters of the book examine the degradation of various fuel cell components, including degradation mechanisms, the effects of operating conditions, mitigation strategies, and testing protocols. The book then discusses the effects of different contamination sources on the degradation of fuel cell components and explores the relationship between external environment and the degradation of fuel cell components and systems. It also reviews the correlation between operational mode, such as start-up and shut-down, and the degradation of fuel cell components and systems. The last chapter explains how the design of fuel cell hardware relates to failure modes. Written by international scientists active in PEM fuel cell research, this volume is enriched with practical information on various failure modes analysis for diagnosing cell performance and identifying failure modes of degradation. This in turn helps in the development of mitigation strategies and the increasing commercialization of PEM fuel cells.
PEM Fuel Cell Failure Mode Analysis presents a systematic analysis of PEM fuel cell durability and failure modes. It provides readers with a fundamental understanding of insufficient fuel cell durability, identification of failure modes and failure mechanisms of PEM fuel cells, fuel cell component degradation testing, and mitigation strategies against degradation. The first several chapters of the book examine the degradation of various fuel cell components, including degradation mechanisms, the effects of operating conditions, mitigation strategies, and testing protocols. The book then discusses the effects of different contamination sources on the degradation of fuel cell components and explores the relationship between external environment and the degradation of fuel cell components and systems. It also reviews the correlation between operational mode, such as start-up and shut-down, and the degradation of fuel cell components and systems. The last chapter explains how the design of fuel cell hardware relates to failure modes. Written by international scientists active in PEM fuel cell research, this volume is enriched with practical information on various failure modes analysis for diagnosing cell performance and identifying failure modes of degradation. This in turn helps in the development of mitigation strategies and the increasing commercialization of PEM fuel cells.
PEM Fuel Cell Diagnostic Tools presents various tools for diagnosing PEM fuel cells and stacks, including in situ and ex situ diagnostic tools, electrochemical techniques, and physical/chemical methods. The text outlines the principles, experimental implementation, data processing, and application of each technique, along with its capabilities and weaknesses. The book covers many diagnostics employed in the characterization and determination of fuel cell performance. It discusses commonly used conventional tools, such as cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. It also examines special tools developed specifically for PEM fuel cells, including transparent cells, cathode discharge, and current mapping, as well as recent advanced tools for diagnosis, such as magnetic resonance imaging and atomic force microscopy. For clarity, the book splits these diagnostic methodologies into two parts-in situ and ex situ. To better understand the tools, PEM fuel cell testing is also discussed. Each self-contained chapter provides cross-references to other chapters. Written by international scientists active in PEM fuel cell research, this volume incorporates state-of-the-art technical advances in PEM fuel cell diagnosis. The diagnostic tools presented help readers to understand the physical and chemical phenomena involved in PEM fuel cells.
PEM Fuel Cell Diagnostic Tools presents various tools for diagnosing PEM fuel cells and stacks, including in situ and ex situ diagnostic tools, electrochemical techniques, and physical/chemical methods. The text outlines the principles, experimental implementation, data processing, and application of each technique, along with its capabilities and weaknesses. The book covers many diagnostics employed in the characterization and determination of fuel cell performance. It discusses commonly used conventional tools, such as cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. It also examines special tools developed specifically for PEM fuel cells, including transparent cells, cathode discharge, and current mapping, as well as recent advanced tools for diagnosis, such as magnetic resonance imaging and atomic force microscopy. For clarity, the book splits these diagnostic methodologies into two parts-in situ and ex situ. To better understand the tools, PEM fuel cell testing is also discussed. Each self-contained chapter provides cross-references to other chapters. Written by international scientists active in PEM fuel cell research, this volume incorporates state-of-the-art technical advances in PEM fuel cell diagnosis. The diagnostic tools presented help readers to understand the physical and chemical phenomena involved in PEM fuel cells.
While PEM fuel cells are highly efficient, environmentally friendly sources of power, their durability hinders the commercialization of this technology. With contributions from international scientists active in PEM fuel cell research, PEM Fuel Cell Durability Handbook, Two-Volume Set provides a comprehensive source of state-of-the-art research in the field. The handbook looks at how to overcome the technical challenges of PEM fuel cell technology and drive the technology toward increased commercialization. The two volumes in the set cover numerous durability-related issues in the development of PEM fuel cells. The first volume analyzes failure modes that result in the insufficient durability of PEM fuel cells. Supplying a handy toolbox for practical work, the second volume brings together the different types of diagnostic tools currently used by PEM fuel cell researchers. By providing an understanding of fuel cell performance, degradation, and failure modes, this two-volume handbook helps readers develop new materials and design novel fuel cells that mitigate their degradation.
|
![]() ![]() You may like...
Reflections on Fanon - The Violences of…
Mohammad H. Tamdgidi
Hardcover
R3,499
Discovery Miles 34 990
Papers Laid Before the Imperial…
E Imperial Conference (1911 London, Great Britain. Colonial Office
Hardcover
R955
Discovery Miles 9 550
Vladimir Arnold - Collected Works…
Alexander B. Givental, Boris Khesin, …
Hardcover
R5,986
Discovery Miles 59 860
|