Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book first presents a systematic theoretical study of wireless localization techniques. Then, guided by the theoretical results, the authors provide design approaches for improving the performance of localization systems and making the deployment of the systems more convenient. The book aims to address the following issues: how reliable the wireless localization system can be; how the system can scale up with the number of users to be served; how to make key design decisions in implementing the system; and how to mitigate human efforts in deploying the wireless localization system. The book is relevant for researchers, academics, and students interested in wireless localization technology.
This book presents a collection of algorithms and VLSI architectures of entropy (or statistical) codecs of recent video compression standards, with focus on the H.264/AVC standard. For any visual data compression scheme, there exists a combination of two, or all of the following three stages: spatial, temporal, and statistical compression. General readers are first introduced with the various algorithms of the statistical coders. The VLSI implementations are also reviewed and discussed. Readers with limited hardware design background are also introduced with a design methodology starting from performance-complexity analyses to software/hardware co-simulation. A typical design of the Contextbased Adaptive Binary Arithmetic Coding (CABAC) encoder is also presented in details. To support System-on-Chip design environment, the CABAC design is wrapped with a SoC-based Wishbone system bus interface.
Next-generation Internet providers face high expectations, as contemporary users worldwide expect high-quality multimedia functionality in a landscape of ever-expanding network applications. This volume explores the critical research issue of turning today's greatly enhanced hardware capacity to good use in designing a scalable multicast protocol for supporting large-scale multimedia services. Linking new hardware to improved performance in the Internet's next incarnation is a research hot-spot in the computer communications field. The methodical presentation deals with the key questions in turn: from the mechanics of multicast protocols to current state-of-the-art designs, and from methods of theoretical analysis of these protocols to applying them in the ns2 network simulator, known for being hard to extend. The authors' years of research in the field inform this thorough treatment, which covers details such as applying AOM (application-oriented multicast) protocol to IPTV provision and resolving the practical design issues thrown up in creating scalable AOM multicast service models. "
This book presents a collection of algorithms and VLSI architectures of entropy (or statistical) codecs of recent video compression standards, with focus on the H.264/AVC standard. For any visual data compression scheme, there exists a combination of two, or all of the following three stages: spatial, temporal, and statistical compression. General readers are first introduced with the various algorithms of the statistical coders. The VLSI implementations are also reviewed and discussed. Readers with limited hardware design background are also introduced with a design methodology starting from performance-complexity analyses to software/hardware co-simulation. A typical design of the Contextbased Adaptive Binary Arithmetic Coding (CABAC) encoder is also presented in details. To support System-on-Chip design environment, the CABAC design is wrapped with a SoC-based Wishbone system bus interface.
|
You may like...
|