Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The main objective is to bridge the semantic gap between high-level concepts in the human mind and low-level features extractable by the machines. The two key issues emphasized are "content-awareness" and "user-in-the-loop." The authors provide a comprehensive review on algorithms for visual feature extraction based on color, texture, shape, and structure, and techniques for incorporating such information to aid browsing, exploration, search, and streaming of image and video data. They also discuss issues related to the mixed use of textual and low-level visual features to facilitate more effective access of multimedia data. To bridge the semantic gap, significant recent research efforts have also been put on learning during user interactions, which is also known as "relevance feedback." The difficulty and challenge also come from the personalized information need of each user and a small amount of feedbacks the machine could obtain through real-time user interaction. The authors present and discuss several recently proposed classification and learning techniques that are specifically designed for this problem, with kernel- and boosting-based approaches for nonlinear extensions. Exploration of Visual Data provides state-of-the-art materials on the topics of content-based description of visual data, content-based low-bitrate video streaming, and latest asymmetric and nonlinear relevance feedback algorithms, which to date are unpublished. Exploration of Visual Data will be of interest to researchers, practitioners, and graduate-level students in theareas of multimedia information systems, multimedia databases, computer vision, machine learning.
Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The main objective is to bridge the semantic gap between high-level concepts in the human mind and low-level features extractable by the machines. The two key issues emphasized are "content-awareness" and "user-in-the-loop". The authors provide a comprehensive review on algorithms for visual feature extraction based on color, texture, shape, and structure, and techniques for incorporating such information to aid browsing, exploration, search, and streaming of image and video data. They also discuss issues related to the mixed use of textual and low-level visual features to facilitate more effective access of multimedia data. Exploration of Visual Data provides state-of-the-art materials on the topics of content-based description of visual data, content-based low-bitrate video streaming, and latest asymmetric and nonlinear relevance feedback algorithms, which to date are unpublished.
This book constitutes the refereed proceedings of the 7th Pacific Rim Conference on Multimedia, PCM 2006, held in Hangzhou, China in November 2006. The 116 revised papers presented were carefully reviewed and selected from a total of 755 submissions. The papers cover a wide range of topics, including all aspects of multimedia, both technical and artistic perspectives and both theoretical and practical issues. Fields addressed are multimedia processing and retrieval, multimedia system support and networking, multimedia security, as well as multimedia tools, end-systems and applications.
Here are the refereed proceedings of the 5th International Conference on Image and Video Retrieval, CIVR 2006, held in Singapore in July 2006. Presents 18 revised full papers and 30 poster papers, together with extended abstracts of 5 papers of 1 special session and those of 10 demonstration papers. These cover interactive image and video retrieval, semantic image retrieval, visual feature analysis, learning and classification, image and video retrieval metrics, and machine tagging.
Self-driving vehicles are a rapidly growing area of research and expertise. Theories and Practice of Self-Driving Vehicles presents a comprehensive introduction to the technology of self driving vehicles across the three domains of perception, planning and control. The title systematically introduces vehicle systems from principles to practice, including basic knowledge of ROS programming, machine and deep learning, as well as basic modules such as environmental perception and sensor fusion. The book introduces advanced control algorithms as well as important areas of new research. This title offers engineers, technicians and students an accessible handbook to the entire stack of technology in a self-driving vehicle. Theories and Practice of Self-Driving Vehicles presents an introduction to self-driving vehicle technology from principles to practice. Ten chapters cover the full stack of driverless technology for a self-driving vehicle. Written by two authors experienced in both industry and research, this book offers an accessible and systematic introduction to self-driving vehicle technology.
|
You may like...
|