Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
As the title suggests, we introduce a novel differential approach
to solution thermodynamics and use it for the study of aqueous
solutions. We evaluate the quantities of higher order derivative
than the normal thermodynamic functions. We allow these higher
derivative data speak for themselves without resorting to any model
system. We thus elucidate the molecular processes in solution,
(referred to in this book "mixing scheme"), to the depth equal to,
if not deeper, than that gained by spectroscopic and other methods.
We show that there are three composition regions in aqueous
solutions of non-electrolytes, each of which has a qualitatively
distinct mixing scheme. The boundary between the adjacent regions
is associated with an anomaly in the third derivatives of G. The
loci of the anomalies in the temperature-composition field form the
line sometimes referred as "Koga line." We then take advantage of
the anomaly of a third derivative quantity of 1-propanol in the
ternary aqueous solution, 1-propanol - sample species - H2O. We use
its induced change as a probe of the effect of a sample species on
H2O. In this way, we clarified what a hydrophobe, or a hydrophile,
and in turn, an amphiphile, does to H2O. We also apply the same
methodology to ions that have been ranked by the Hofmeister series.
We show that the kosmotropes (salting out, or stabilizing agents)
are either hydrophobes or hydration centres, and that chaotropes
(salting in, or destablizing agents) are hydrophiles.
Solution Thermodynamics and its Application to Aqueous Solutions: A Differential Approach, Second Edition introduces a differential approach to solution thermodynamics, applying it to the study of aqueous solutions. This valuable approach reveals the molecular processes in solutions in greater depth than that gained by spectroscopic and other methods. The book clarifies what a hydrophobe, or a hydrophile, and in turn, an amphiphile, does to H2O. By applying the same methodology to ions that have been ranked by the Hofmeister series, the author shows that the kosmotropes are either hydrophobes or hydration centers, and that chaotropes are hydrophiles. This unique approach and important updates make the new edition a must-have reference for those active in solution chemistry.
|
You may like...
|