Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers.
Batteries are a necessary part of a low-emission energy system, as they can store renewable electricity and assist the grid. Utility-scale batteries, with capacities of several to hundreds of MWh, are particularly important for condominiums, local grid nodes, and EV charging arrays. However, such batteries are expensive and need to be monitored and managed well to maintain capacity and reliability. Artificial intelligence offers a solution for effective monitoring and management of utility-scale batteries. This book systematically describes AI-based technologies for battery state estimation and modeling for utility-scale Li-ion batteries. Chapters cover utility-scale lithium-ion battery system characteristics, AI-based equivalent modeling, parameter identification, state of charge estimation, battery parameter estimation, offer samples and case studies for utility-scale battery operation, and conclude with a summary and prospect for AI-based battery status monitoring. The book provides practical references for the design and application of large-scale lithium-ion battery systems. AI for Status Monitoring of Utility-Scale Batteries is an invaluable resource for researchers in battery R&D, including battery management systems and related power electronics, battery manufacturers, and advanced students.
Multidimensional Lithium-Ion Battery Status Monitoring focuses on equivalent circuit modeling, parameter identification, and state estimation in lithium-ion battery power applications. It explores the requirements of high-power lithium-ion batteries for new energy vehicles and systematically describes the key technologies in core state estimation based on battery equivalent modeling and parameter identification methods of lithium-ion batteries, providing a technical reference for the design and application of power lithium-ion battery management systems. Reviews Li-ion battery characteristics and applications. Covers battery equivalent modeling, including electrical circuit modeling and parameter identification theory Discusses battery state estimation methods, including state of charge estimation, state of energy prediction, state of power evaluation, state of health estimation, and cycle life estimation Introduces equivalent modeling and state estimation algorithms that can be applied to new energy measurement and control in large-scale energy storage Includes a large number of examples and case studies This book has been developed as a reference for researchers and advanced students in energy and electrical engineering.
State Estimation Strategies in Lithium-ion Battery Management Systems presents key technologies and methodologies in modeling and monitoring charge, energy, power and health of lithium-ion batteries. Sections introduce core state parameters of the lithium-ion battery, reviewing existing research and the significance of the prediction of core state parameters of the lithium-ion battery and analyzing the advantages and disadvantages of prediction methods of core state parameters. Characteristic analysis and aging characteristics are then discussed. Subsequent chapters elaborate, in detail, on modeling and parameter identification methods and advanced estimation techniques in different application scenarios. Offering a systematic approach supported by examples, process diagrams, flowcharts, algorithms, and other visual elements, this book is of interest to researchers, advanced students and scientists in energy storage, control, automation, electrical engineering, power systems, materials science and chemical engineering, as well as to engineers, R&D professionals, and other industry personnel.
This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers.
|
You may like...
|