0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Sparse Optimization Theory and Methods (Paperback): Yun-Bin Zhao Sparse Optimization Theory and Methods (Paperback)
Yun-Bin Zhao
R1,564 Discovery Miles 15 640 Ships in 12 - 19 working days

Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author's latest research in the field that have not appeared in other books.

Sparse Optimization Theory and Methods (Hardcover): Yun-Bin Zhao Sparse Optimization Theory and Methods (Hardcover)
Yun-Bin Zhao
R5,387 Discovery Miles 53 870 Ships in 12 - 19 working days

Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author's latest research in the field that have not appeared in other books.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Paul Klee Pedagogical Sketchbook…
Paul Klee Hardcover R881 R739 Discovery Miles 7 390
Stellenbosch: Murder Town - Two Decades…
Julian Jansen Paperback R360 R337 Discovery Miles 3 370
Accountancy and Social Responsibility…
Zivko Bergant Hardcover R3,613 Discovery Miles 36 130
Blood Trail
Tony Park Paperback R310 R281 Discovery Miles 2 810
Talk Therapy Toolkit - Theory And…
T. Naidu, S. Ramlall Paperback R935 R886 Discovery Miles 8 860
Studies in Natural Products Chemistry…
Atta-ur Rahman Hardcover R5,973 R5,522 Discovery Miles 55 220
Elizabeth Arden Pretty Eau De Parfum…
 (2)
R1,629 R749 Discovery Miles 7 490
Challenges and Applications for Hand…
Lalit Kane, Bhupesh Kumar Dewangan, … Hardcover R5,784 Discovery Miles 57 840
Victoria's Secret Heavenly Eau De Parfum…
R1,912 Discovery Miles 19 120
Understanding X-Rays - A Synopsis of…
Fred Van Gelderen Hardcover R1,663 Discovery Miles 16 630

 

Partners