![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This volume contains thirteen articles on advances in applied mathematics and computing methods for engineering problems. Six papers are on optimization methods and algorithms with emphasis on problems with multiple criteria; four articles are on numerical methods for applied problems modeled with nonlinear PDEs; two contributions are on abstract estimates for error analysis; finally one paper deals with rare events in the context of uncertainty quantification. Applications include aerospace, glaciology and nonlinear elasticity. Hereinis a selection of contributions from speakers at two conferences on applied mathematics held in June 2012 at the University of Jyvaskyla, Finland. The first conference, Optimization and PDEs with Industrial Applications celebrated the seventieth birthday of Professor Jacques Periaux of theUniversity of Jyvaskyla and Polytechnic University of Catalonia (Barcelona Tech) and the second conference, Optimization and PDEs with Applications celebrated the seventy-fifth birthday of Professor Roland Glowinski of the University of Houston. This work should be of interest to researchers and practitioners as well as advanced students or engineers in computational and applied mathematics or mechanics."
This volume contains thirteen articles on advances in applied mathematics and computing methods for engineering problems. Six papers are on optimization methods and algorithms with emphasis on problems with multiple criteria; four articles are on numerical methods for applied problems modeled with nonlinear PDEs; two contributions are on abstract estimates for error analysis; finally one paper deals with rare events in the context of uncertainty quantification. Applications include aerospace, glaciology and nonlinear elasticity. Herein is a selection of contributions from speakers at two conferences on applied mathematics held in June 2012 at the University of Jyväskylä, Finland. The first conference, “Optimization and PDEs with Industrial Applications” celebrated the seventieth birthday of Professor Jacques Périaux of the University of Jyväskylä and Polytechnic University of Catalonia (Barcelona Tech) and the second conference, “Optimization and PDEs with Applications” celebrated the seventy-fifth birthday of Professor Roland Glowinski of the University of Houston. This work should be of interest to researchers and practitioners as well as advanced students or engineers in computational and applied mathematics or mechanics.
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
This book combines a comprehensive state-of-the-art analysis of bifurcations of discrete-time dynamical systems with concrete instruction on implementations (and example applications) in the free MATLAB (R) software MatContM developed by the authors. While self-contained and suitable for independent study, the book is also written with users in mind and is an invaluable reference for practitioners. Part I focuses on theory, providing a systematic presentation of bifurcations of fixed points and cycles of finite-dimensional maps, up to and including cases with two control parameters. Several complementary methods, including Lyapunov exponents, invariant manifolds and homoclinic structures, and parts of chaos theory, are presented. Part II introduces MatContM through step-by-step tutorials on how to use the general numerical methods described in Part I for simple dynamical models defined by one- and two-dimensional maps. Further examples in Part III show how MatContM can be used to analyze more complicated models from modern engineering, ecology, and economics.
|
![]() ![]() You may like...
Handbook of Competition in Banking and…
Jacob A. Bikker, Laura Spierdijk
Paperback
R1,592
Discovery Miles 15 920
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
![]()
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Cuito Cuanavale - 12 Months Of War That…
Fred Bridgland
Paperback
![]()
|