Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
For more than 30 years, the author has studied the model-theoretic aspects of the theory of valued fields and multi-valued fields. Many of the key results included in this book were obtained by the author whilst preparing the manuscript. Thus the unique overview of the theory, as developed in the book, has been previously unavailable. The book deals with the theory of valued fields and mutli-valued fields. The theory of PrA1/4fer rings is discussed from the geometric' point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of PrA1/4fer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, i.e., it can be expressed in the language of predicate calculus. The most important results obtained in the book include a criterion for the elementarity of an embedding of a multi-valued field and a criterion for the elementary equivalence for multi-valued fields from the class defined by the additional natural elementary conditions (absolute unramification, maximality and almost continuity of local elementary properties). The book concludes with a brief chapter discussing the bibliographic references available on the material presented, and a short history of the major developments within the field.
The theory of constructive (recursive) models follows from works of Froehlich, Shepherdson, Mal'tsev, Kuznetsov, Rabin, and Vaught in the 50s. Within the framework of this theory, algorithmic properties of abstract models are investigated by constructing representations on the set of natural numbers and studying relations between algorithmic and structural properties of these models. This book is a very readable exposition of the modern theory of constructive models and describes methods and approaches developed by representatives of the Siberian school of algebra and logic and some other researchers (in particular, Nerode and his colleagues). The main themes are the existence of recursive models and applications to fields, algebras, and ordered sets (Ershov), the existence of decidable prime models (Goncharov, Harrington), the existence of decidable saturated models (Morley), the existence of decidable homogeneous models (Goncharov and Peretyat'kin), properties of the Ehrenfeucht theories (Millar, Ash, and Reed), the theory of algorithmic dimension and conditions of autostability (Goncharov, Ash, Shore, Khusainov, Ventsov, and others), and the theory of computable classes of models with various properties. Future perspectives of the theory of constructive models are also discussed. Most of the results in the book are presented in monograph form for the first time. The theory of constructive models serves as a basis for recursive mathematics. It is also useful in computer science, in particular, in the study of programming languages, higher level languages of specification, abstract data types, and problems of synthesis and verification of programs. Therefore, the book will be usefulfor not only specialists in mathematical logic and the theory of algorithms but also for scientists interested in the mathematical fundamentals of computer science. The authors are eminent specialists in mathematical logic. They have established fundamental results on elementary theories, model theory, the theory of algorithms, field theory, group theory, applied logic, computable numberings, the theory of constructive models, and the theoretical computer science.
In this book, Yurii L. Ershov posits the view that computability-in the broadest sense-can be regarded as the Sigma-definability in the suitable sets. He presents a new approach to providing the Godel incompleteness theorem based on systematic use of the formulas with the restricted quantifiers. The volume also includes a novel exposition on the foundations of the theory of admissible sets with urelements, using the Gandy theorem throughout the theory's development. Other topics discussed are forcing, Sigma-definability, dynamic logic, and Sigma-predicates of finite types."
For more than 30 years, the author has studied the model-theoretic aspects of the theory of valued fields and multi-valued fields. Many of the key results included in this book were obtained by the author whilst preparing the manuscript. Thus the unique overview of the theory, as developed in the book, has been previously unavailable. The book deals with the theory of valued fields and mutli-valued fields. The theory of Prufer rings is discussed from the `geometric' point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of Prufer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, i.e., it can be expressed in the language of predicate calculus. The most important results obtained in the book include a criterion for the elementarity of an embedding of a multi-valued field and a criterion for the elementary equivalence for multi-valued fields from the class defined by the additional natural elementary conditions (absolute unramification, maximality and almost continuity of local elementary properties). The book concludes with a brief chapter discussing the bibliographic references available on the material presented, and a short history of the major developments within the field.
The theory of constructive (recursive) models follows from works of Froehlich, Shepherdson, Mal'tsev, Kuznetsov, Rabin, and Vaught in the 50s. Within the framework of this theory, algorithmic properties of abstract models are investigated by constructing representations on the set of natural numbers and studying relations between algorithmic and structural properties of these models. This book is a very readable exposition of the modern theory of constructive models and describes methods and approaches developed by representatives of the Siberian school of algebra and logic and some other researchers (in particular, Nerode and his colleagues). The main themes are the existence of recursive models and applications to fields, algebras, and ordered sets (Ershov), the existence of decidable prime models (Goncharov, Harrington), the existence of decidable saturated models (Morley), the existence of decidable homogeneous models (Goncharov and Peretyat'kin), properties of the Ehrenfeucht theories (Millar, Ash, and Reed), the theory of algorithmic dimension and conditions of autostability (Goncharov, Ash, Shore, Khusainov, Ventsov, and others), and the theory of computable classes of models with various properties. Future perspectives of the theory of constructive models are also discussed. Most of the results in the book are presented in monograph form for the first time. The theory of constructive models serves as a basis for recursive mathematics. It is also useful in computer science, in particular, in the study of programming languages, higher level languages of specification, abstract data types, and problems of synthesis and verification of programs. Therefore, the book will be useful for not only specialists in mathematical logic and the theory of algorithms but also for scientists interested in the mathematical fundamentals of computer science. The authors are eminent specialists in mathematical logic. They have established fundamental results on elementary theories, model theory, the theory of algorithms, field theory, group theory, applied logic, computable numberings, the theory of constructive models, and the theoretical computer science.
|
You may like...
|