0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (1)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Quality Breeding in Field Crops (Hardcover, 1st ed. 2019): Asif M. Iqbal Qureshi, Zahoor Ahmad Dar, Shabir Hussain Wani Quality Breeding in Field Crops (Hardcover, 1st ed. 2019)
Asif M. Iqbal Qureshi, Zahoor Ahmad Dar, Shabir Hussain Wani
R4,518 Discovery Miles 45 180 Ships in 10 - 15 working days

Development of superior crops that have consistent performance in quality and in quantity has not received the same emphasis in the field of genetics and breeding as merited. Specialty trait requires special focus to propagate. Yet basic germplasm and breeding methodologies optimized to improve crops are often applied in the development of improved specialty types. However, because of the standards required for specialty traits, methods of development and improvement are usually more complex than those for common commodity crops. The same standards of performance are desired, but the genetics of the specialty traits often impose breeding criteria distinct from those of non-specialty possessing crops. Specifically, quality improvement programs have unique characteristics that require careful handling and monitoring during their development for specific needs. Adding value either via alternative products from the large volumes of grain produced or development of specialty types is of interest to producers and processors. This work assimilates the most topical results about quality improvement with contemporary plant breeding approaches.The objective of this book is to provide a summary of the germplasm, methods of development, and specific problems involved for quality breeding. In total, fourteen chapters, written by leading scientists involved in crop improvement research, provide comprehensive coverage of the major factors impacting specialty crop improvement.

Maize Improvement - Current Advances in Yield, Quality, and Stress Tolerance under Changing Climatic Scenarios (Hardcover, 1st... Maize Improvement - Current Advances in Yield, Quality, and Stress Tolerance under Changing Climatic Scenarios (Hardcover, 1st ed. 2023)
Shabir Hussain Wani, Zahoor Ahmad Dar, Gyanendra Pratap Singh
R5,296 Discovery Miles 52 960 Ships in 10 - 15 working days

Maize is one of the most generally grown cereal crops at global level, followed by wheat and rice. Maize is the major crop in China both in terms of yield and acreage. In 2012, worldwide maize production was about 840 million tons. Maize has long been a staple food of most of the global population (particularly in South America and Africa) and a key nutrient resource for animal feed and for food industrial materials. Maize belts vary from the latitude 58° north to the latitude 40° south, and maize ripens every month of the year. Abiotic and biotic stresses are common in maize belts worldwide. Abiotic stresses (chiefly drought, salinity, and extreme temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, production and productivity. In the recent past, intense droughts, waterlogging, and extreme temperatures have relentlessly affected maize growth and yield. In China, 60% of the maize planting area is prone to drought, and the resultant yield loss is 20%–30% per year; in India, 25%–30% of the maize yield is lost as a result of waterlogging each year. The biotic stresses on maize are chiefly pathogens (fungal, bacterial, and viral), and the consequential syndromes, like ear/stalk rot, rough dwarf disease, and northern leaf blight, are widespread and result in grave damage. Roughly 10% of the global maize yield is lost each year as a result of biotic stresses. For example, the European corn borer [ECB, Ostrinianubilalis (Hübner)] causes yield losses of up to 2000 million dollars annually in the USA alone in the northern regions of China, the maize yield loss reaches 50% during years when maize badly affected by northern leaf blight. In addition, abiotic and biotic stresses time and again are present at the same time and rigorously influence maize production. To fulfill requirements of each maize-growing situation and to tackle the above mentions stresses in an effective way sensibly designed multidisciplinary strategy for developing suitable varieties for each of these stresses has been attempted during the last decade.  Genomics is a field of supreme significance for elucidating the genetic architecture of complex quantitative traits and characterizing germplasm collections to achieve precise and specific manipulation of desirable alleles/genes. Advances in genotyping technologies and high throughput phenomics approaches have resulted in accelerated crop improvement like genomic selection, speed breeding, particularly in maize.  Molecular breeding tools like collaborating all omics, has led to the development of maize genotypes having higher yields, improved quality and resilience to biotic and abiotic stresses. Through this book, we bring into one volume the various important aspects of maize improvement and the recent technological advances in development of maize genotypes with high yield, high quality and resilience to biotic and abiotic stresses

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
Raz Tech Laptop Security Chain Cable…
R299 R169 Discovery Miles 1 690
Homemark Pest Ultrasonic Plug-In Insect…
 (2)
R399 R327 Discovery Miles 3 270
Addis Mop (300g)
R92 Discovery Miles 920
Recipes From My Vegetable Garden
Ina Paarman Paperback R35 R23 Discovery Miles 230
Complete Clumping Cat Litter (5kg)
R77 Discovery Miles 770
Return Of The Dream Canteen
Red Hot Chili Peppers CD R185 R112 Discovery Miles 1 120
Morgan
Kate Mara, Jennifer Jason Leigh, … Blu-ray disc  (1)
R70 Discovery Miles 700
Tenet
John David Washington, Robert Pattinson Blu-ray disc  (1)
R54 Discovery Miles 540
Focus Office Desk Chair (Black)
R1,199 R989 Discovery Miles 9 890

 

Partners