Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Thurston maps are topological generalizations of postcritically-finite rational maps. This book provides a comprehensive study of ergodic theory of expanding Thurston maps, focusing on the measure of maximal entropy, as well as a more general class of invariant measures, called equilibrium states, and certain weak expansion properties of such maps. In particular, we present equidistribution results for iterated preimages and periodic points with respect to the unique measure of maximal entropy by investigating the number and locations of fixed points. We then use the thermodynamical formalism to establish the existence, uniqueness, and various other properties of the equilibrium state for a Holder continuous potential on the sphere equipped with a visual metric. After studying some weak expansion properties of such maps, we obtain certain large deviation principles for iterated preimages and periodic points under an additional assumption on the critical orbits of the maps. This enables us to obtain general equidistribution results for such points with respect to the equilibrium states under the same assumption.
Analysis and Control of Boolean Networks presents a systematic new approach to the investigation of Boolean control networks. The fundamental tool in this approach is a novel matrix product called the semi-tensor product (STP). Using the STP, a logical function can be expressed as a conventional discrete-time linear system. In the light of this linear expression, certain major issues concerning Boolean network topology - fixed points, cycles, transient times and basins of attractors - can be easily revealed by a set of formulae. This framework renders the state-space approach to dynamic control systems applicable to Boolean control networks. The bilinear-systemic representation of a Boolean control network makes it possible to investigate basic control problems including controllability, observability, stabilization, disturbance decoupling etc.
Analysis and Control of Boolean Networks presents a systematic new approach to the investigation of Boolean control networks. The fundamental tool in this approach is a novel matrix product called the semi-tensor product (STP). Using the STP, a logical function can be expressed as a conventional discrete-time linear system. In the light of this linear expression, certain major issues concerning Boolean network topology - fixed points, cycles, transient times and basins of attractors - can be easily revealed by a set of formulae. This framework renders the state-space approach to dynamic control systems applicable to Boolean control networks. The bilinear-systemic representation of a Boolean control network makes it possible to investigate basic control problems including controllability, observability, stabilization, disturbance decoupling etc.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|