0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion - A Parametric Characteristic... Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion - A Parametric Characteristic Approach (Hardcover, 2015 ed.)
Xingjian Jing, Ziqiang Lang
R3,872 R3,432 Discovery Miles 34 320 Save R440 (11%) Ships in 12 - 17 working days

This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis and design method. Based on the parametric characteristic approach, nonlinear influence in the frequency domain can be investigated with a novel insight, i.e., alternating series, which is followed by some application results in vibration control. Magnitude bounds of frequency response functions of nonlinear systems can also be studied with a parametric characteristic approach, which result in novel parametric convergence criteria for any given parametric nonlinear model whose input-output relationship allows a convergent Volterra series expansion. This book targets those readers who are working in the areas related to nonlinear analysis and design, nonlinear signal processing, nonlinear system identification, nonlinear vibration control, and so on. It particularly serves as a good reference for those who are studying frequency domain methods for nonlinear systems.

Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion - A Parametric Characteristic... Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion - A Parametric Characteristic Approach (Paperback, Softcover reprint of the original 1st ed. 2015)
Xingjian Jing, Ziqiang Lang
R2,804 Discovery Miles 28 040 Ships in 10 - 15 working days

This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain.  The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis and design method. Based on the parametric characteristic approach, nonlinear influence in the frequency domain can be investigated with a novel insight, i.e., alternating series, which is followed by some application results in vibration control. Magnitude bounds of frequency response functions of nonlinear systems can also be studied with a parametric characteristic approach, which result in novel parametric convergence criteria for any given parametric nonlinear model whose input-output relationship allows a convergent Volterra series expansion. This book targets those readers who are working in the areas related to nonlinear analysis and design, nonlinear signal processing, nonlinear system identification, nonlinear vibration control, and so on. It particularly serves as a good reference for those who are studying frequency domain methods for nonlinear systems.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Canon 445 Original Ink Cartridge (Black)
R700 R335 Discovery Miles 3 350
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Efekto Cypermethrin - Emulsifiable…
R109 Discovery Miles 1 090
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Seagull Clear Storage Box (29lt)
R241 Discovery Miles 2 410
Roald Dahl: 16-Book Collection
Roald Dahl Paperback R1,200 R936 Discovery Miles 9 360
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
CritiCare® Sterile Gauze Swabs (75 x 75…
R3 Discovery Miles 30
Genie Blue Light Blocking Glasses…
R399 R299 Discovery Miles 2 990
A Court Of Thorns And Roses: 5-Book…
Sarah J. Maas Paperback R1,250 R968 Discovery Miles 9 680

 

Partners