Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 66 matches in All Departments
This book applies generalized fractional differentiation techniques of Caputo, Canavati and Conformable types to a great variety of integral inequalities e.g. of Ostrowski and Opial types, etc. Some of these are extended to Banach space valued functions. These inequalities have also great impact in numerical analysis, stochastics and fractional differential equations. The book continues with generalized fractional approximations by positive sublinear operators which derive from the presented Korovkin type inequalities and also includes abstract cases. It presents also multivariate complex Korovkin quantitative approximation theory. It follows M-fractional integral inequalities of Ostrowski and Polya types. The results are weighted so they provide a great variety of cases and applications. The second part of the book deals with the quantitative fractional Korovkin type approximation of stochastic processes and lays there the foundations of stochastic fractional calculus. The book considers both Caputo and Conformable fractional directions and derives regular and trigonometric results. The positive linear operators can be expectation operator commutative or not. This book results are expected to find applications in many areas of pure and applied mathematics and stochastics. As such this monograph is suitable for researchers, graduate students, and seminars of the above disciplines, also to be in all science and engineering libraries.
This compact book focuses on self-adjoint operators' well-known named inequalities and Korovkin approximation theory, both in a Hilbert space environment. It is the first book to study these aspects, and all chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references for further reading. The book's results are expected to find applications in many areas of pure and applied mathematics. Given its concise format, it is especially suitable for use in related graduate classes and research projects. As such, the book offers a valuable resource for researchers and graduate students alike, as well as a key addition to all science and engineering libraries.
This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann-Liouville type and related results including inequalities. We examine the case of low order Riemann-Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar's well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.
Real Analysis is a discipline of intensive study in many institutions of higher education, because it contains useful concepts and fundamental results in the study of mathematics and physics, of the technical disciplines and geometry. This book is the first one of its kind that solves mathematical analysis problems with all four related main software Matlab, Mathcad, Mathematica and Maple. Besides the fundamental theoretical notions, the book contains many exercises, solved both mathematically and by computer, using: Matlab 7.9, Mathcad 14, Mathematica 8 or Maple 15 programming languages. The book is divided into nine chapters, which illustrate the application of the mathematical concepts using the computer. Each chapter presents the fundamental concepts and the elements required to solve the problems contained in that chapter and finishes with some problems left to be solved by the readers. The calculations can be verified by using a specific software such as Matlab, Mathcad, Mathematica or Maple.
"Intelligent Routines II: Solving Linear Algebra and Differential Geometry with Sage" contains numerous of examples and problems as well as many unsolved problems. This book extensively applies the successful software Sage, which can be found free online http: //www.sagemath.org/. Sage is a recent and popular software for mathematical computation, available freely and simple to use. This book is useful to all applied scientists in mathematics, statistics and engineering, as well for late undergraduate and graduate students of above subjects. It is the first such book in solving symbolically with Sage problems in Linear Algebra and Differential Geometry. Plenty of SAGE applications are given at each step of the exposition.
This monograph examines and develops the Global Smoothness Preservation Property (GSPP) and the Shape Preservation Property (SPP) in the field of interpolation of functions. The study is developed for the univariate and bivariate cases using well-known classical interpolation operators of Lagrange, GrA1/4nwald, Hermite-FejA(c)r and Shepard type. One of the first books on the subject, it presents interesting new results alongwith an excellent survey of past research. Key features include: - potential applications to data fitting, fluid dynamics, curves and surfaces, engineering, and computer-aided geometric design - presents recent work featuring many new interesting results as well as an excellent survey of past research - many interesting open problems for future research presented throughout the text - includes 20 very suggestive figures of nine types of Shepard surfaces concerning their shape preservation property - generic techniques of the proofs allow for easy application to obtaining similar results for other interpolation operators This unique, well-written text is best suited to graduate students and researchers in mathematical analysis, interpolation of functions, pure and applied mathematicians in numerical analysis, approximation theory, data fitting, computer-aided geometric design, fluid mechanics, and engineering researchers.
Featuring the clearly presented and expertly-refereed contributions of leading researchers in the field of approximation theory, this volume is a collection of the best contributions at the Third International Conference on Applied Mathematics and Approximation Theory, an international conference held at TOBB University of Economics and Technology in Ankara, Turkey, on May 28-31, 2015. The goal of the conference, and this volume, is to bring together key work from researchers in all areas of approximation theory, covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. These topics are presented both within their traditional context of approximation theory, while also focusing on their connections to applied mathematics. As a result, this collection will be an invaluable resource for researchers in applied mathematics, engineering and statistics.
This brief book presents the strong fractional analysis of Banach space valued functions of a real domain. The book's results are abstract in nature: analytic inequalities, Korovkin approximation of functions and neural network approximation. The chapters are self-contained and can be read independently. This concise book is suitable for use in related graduate classes and many research projects. An extensive list of references is provided for each chapter. The book's results are relevant for many areas of pure and applied mathematics. As such, it offers a unique resource for researchers, and a valuable addition to all science and engineering libraries.
This book presents applications of Newton-like and other similar methods to solve abstract functional equations involving fractional derivatives. It focuses on Banach space-valued functions of a real domain - studied for the first time in the literature. Various issues related to the modeling and analysis of fractional order systems continue to grow in popularity, and the book provides a deeper and more formal analysis of selected issues that are relevant to many areas - including decision-making, complex processes, systems modeling and control - and deeply embedded in the fields of engineering, computer science, physics, economics, and the social and life sciences. The book offers a valuable resource for researchers and graduate students, and can also be used as a textbook for seminars on the above-mentioned subjects. All chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references.
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP."
This brief monograph is the first one to deal exclusively with the quantitative approximation by artificial neural networks to the identity-unit operator. Here we study with rates the approximation properties of the "right" sigmoidal and hyperbolic tangent artificial neural network positive linear operators. In particular we study the degree of approximation of these operators to the unit operator in the univariate and multivariate cases over bounded or unbounded domains. This is given via inequalities and with the use of modulus of continuity of the involved function or its higher order derivative. We examine the real and complex cases. For the convenience of the reader, the chapters of this book are written in a self-contained style. This treatise relies on author's last two years of related research work. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The exposed results are expected to find applications in many areas of computer science and applied mathematics, such as neural networks, intelligent systems, complexity theory, learning theory, vision and approximation theory, etc. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science libraries.
In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book's results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.
This monograph presents recent and original work of the author on inequalities in real, functional and fractional analysis. The chapters are self-contained and can be read independently, they include an extensive list of references per chapter.The book's results are expected to find applications in many areas of applied and pure mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, as well as Science and Engineering University libraries.
The main idea of statistical convergence is to demand convergence only for a majority of elements of a sequence. This method of convergence has been investigated in many fundamental areas of mathematics such as: measure theory, approximation theory, fuzzy logic theory, summability theory, and so on. In this monograph we consider this concept in approximating a function by linear operators, especially when the classical limit fails. The results of this book not only cover the classical and statistical approximation theory, but also are applied in the fuzzy logic via the fuzzy-valued operators. The authors in particular treat the important Korovkin approximation theory of positive linear operators in statistical and fuzzy sense. They also present various statistical approximation theorems for some specific real and complex-valued linear operators that are not positive. This is the first monograph in Statistical Approximation Theory and Fuzziness. The chapters are self-contained and several advanced courses can be taught. The research findings will be useful in various applications including applied and computational mathematics, stochastics, engineering, artificial intelligence, vision and machine learning. This monograph is directed to graduate students, researchers, practitioners and professors of all disciplines.
Preservation of Moduli of Continuity for BersteinType Operators (J.A. Adell, J. de la Cal). Lp-Korovkin Type Inequalities for Positive Linear Operators (G.A. Anastassiou). On Some ShiftInvariate Integral Operators, Multivariate Case (G.A. Anastassiou, H.H. Gonska). Multivariate Probabalistic Wavelet Approximation (G. Anastassiou et al.). Probabalistic Approach to the Rounding Problem with Applications to Fair Representation (B. Athanasopoulos). Limit Theorums for Random Multinomial Forms (A. Basalykas). Multivariate Boolean Trapezoidal Rules (G. Baszenski, F.J. Delvos). Convergence Results for an Extension of the Fourier Transform (C. Belingeri, P.E. Ricci). The Action Constants (B.L. Chalmers, B. Shekhtman). Bivariate Probability Distributions Similar to Exponential (B. Dimitrov et al.). Probability, Waiting Time Results for Pattern and Frequency Quotas in the Same Inverse Sampling Problem Via the Dirichlet (M. Ebneshahrashoob, M. Sobel). 25 additional articles. Index.
This book focuses on approximations under the presence of ordinary and fractional smoothness, presenting both the univariate and multivariate cases. It also explores approximations under convexity and a new trend in approximation theory -approximation by sublinear operators with applications to max-product operators, which are nonlinear and rational providing very fast and flexible approximations. The results presented have applications in numerous areas of pure and applied mathematics, especially in approximation theory and numerical analysis in both ordinary and fractional senses. As such this book is suitable for researchers, graduate students, and seminars of the above disciplines, and is a must for all science and engineering libraries.
This monograph is the r st in Fuzzy Approximation Theory. It contains mostly the author s research work on fuzziness of the last ten years and relies a lot on [10]-[32] and it is a natural outgrowth of them. It belongs to the broader area of Fuzzy Mathematics. Chapters are self-contained and several advanced courses can be taught out of this book. We provide lots of applications but always within the framework of Fuzzy Mathematics. In each chapter is given background and motivations. A c- plete list of references is provided at the end. The topics covered are very diverse. In Chapter 1 we give an extensive basic background on Fuzziness and Fuzzy Real Analysis, as well a complete description of the book. In the following Chapters 2,3 we cover in deep Fuzzy Di?erentiation and Integ- tion Theory, e.g. we present Fuzzy Taylor Formulae. It follows Chapter 4 on Fuzzy Ostrowski Inequalities. Then in Chapters 5, 6 we present results on classical algebraic and trigonometric polynomial Fuzzy Approximation.
The subject of numerical methods in finance has recently emerged as a new discipline at the intersection of probability theory, finance, and numerical analysis. The methods employed bridge the gap between financial theory and computational practice, and provide solutions for complex problems that are difficult to solve by traditional analytical methods. Although numerical methods in finance have been studied intensively in recent years, many theoretical and practical financial aspects have yet to be explored. This volume presents current research and survey articles focusing on various numerical methods in finance. The book is designed for the academic community and will also serve professional investors.
This book includes constructive approximation theory; it presents ordinary and fractional approximations by positive sublinear operators, and high order approximation by multivariate generalized Picard, Gauss-Weierstrass, Poisson-Cauchy and trigonometric singular integrals. Constructive and Computational Fractional Analysis recently is more and more in the center of mathematics because of their great applications in the real world. In this book, all presented is original work by the author given at a very general level to cover a maximum number of cases in various applications. The author applies generalized fractional differentiation techniques of Riemann-Liouville, Caputo and Canavati types and of fractional variable order to various kinds of inequalities such as of Opial, Hardy, Hilbert-Pachpatte and on the spherical shell. He continues with E. R. Love left- and right-side fractional integral inequalities. They follow fractional Landau inequalities, of left and right sides, univariate and multivariate, including ones for Semigroups. These are developed to all possible directions, and right-side multivariate fractional Taylor formulae are proven for the purpose. It continues with several Gronwall fractional inequalities of variable order. This book results are expected to find applications in many areas of pure and applied mathematics. As such this book is suitable for researchers, graduate students and seminars of the above disciplines, also to be in all science and engineering libraries.
This book presents generalized Caputo fractional Ostrowski and Gruss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Gruss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann-Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book's results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book's results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.
This monograph is the continuation and completion of the monograph, "Intelligent Systems: Approximation by Artificial Neural Networks" written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book's results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries.
Ordinary and fractional approximations by non-additive integrals, especially by integral approximators of Choquet, Silkret and Sugeno types, are a new trend in approximation theory. These integrals are only subadditive and only the first two are positive linear, and they produce very fast and flexible approximations based on limited data. The author presents both the univariate and multivariate cases. The involved set functions are much weaker forms of the Lebesgue measure and they were conceived to fulfill the needs of economic theory and other applied sciences. The approaches presented here are original, and all chapters are self-contained and can be read independently. Moreover, the book's findings are sure to find application in many areas of pure and applied mathematics, especially in approximation theory, numerical analysis and mathematical economics (both ordinary and fractional). Accordingly, it offers a unique resource for researchers, graduate students, and for coursework in the above-mentioned fields, and belongs in all science and engineering libraries.
This volume presents cutting edge research from the frontiers of functional equations and analytic inequalities active fields. It covers the subject of functional equations in a broad sense, including but not limited to the following topics: Hyperstability of a linear functional equation on restricted domains Hyers-Ulam's stability results to a three point boundary value problem of nonlinear fractional order differential equations Topological degree theory and Ulam's stability analysis of a boundary value problem of fractional differential equations General Solution and Hyers-Ulam Stability of Duo Trigintic Functional Equation in Multi-Banach Spaces Stabilities of Functional Equations via Fixed Point Technique Measure zero stability problem for the Drygas functional equation with complex involution Fourier Transforms and Ulam Stabilities of Linear Differential Equations Hyers-Ulam stability of a discrete diamond-alpha derivative equation Approximate solutions of an interesting new mixed type additive-quadratic-quartic functional equation. The diverse selection of inequalities covered includes Opial, Hilbert-Pachpatte, Ostrowski, comparison of means, Poincare, Sobolev, Landau, Polya-Ostrowski, Hardy, Hermite-Hadamard, Levinson, and complex Korovkin type. The inequalities are also in the environments of Fractional Calculus and Conformable Fractional Calculus. Applications from this book's results can be found in many areas of pure and applied mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such, this volume is suitable for researchers, graduate students and related seminars, and all science and engineering libraries. The exhibited thirty six chapters are self-contained and can be read independently and interesting advanced seminars can be given out of this book.
Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 is a collection of the best articles presented at "Applied Mathematics and Approximation Theory 2012," an international conference held in Ankara, Turkey, May 17-20, 2012. This volume brings together key work from authors in the field covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. The collection will be a useful resource for researchers in applied mathematics, engineering and statistics. |
You may like...
Math Fact Fluency - 60+ Games and…
Jennifer Bay Williams, Gina Kling
Paperback
Successful Industrial Product Innovation…
Roger J. Calantone, C. Anthon Dibenedetto
Hardcover
R1,334
Discovery Miles 13 340
Microeconomics - South African Edition
Gregory Mankiw, Mark Taylor, …
Hardcover
Video Versions - Film Adaptations of…
Thomas L. Erskine, James M. Welsh
Hardcover
R2,446
Discovery Miles 24 460
Careers - An Organisational Perspective
Dries A.M.G. Schreuder, Melinde Coetzee
Paperback
(1)
Teaching life skills in the Foundation…
Mariana Naude, Corinne Meier
Paperback
(2)
Words Their Way: Word Sorts for…
Francine Johnston, Marcia Invernizzi, …
Paperback
R1,656
Discovery Miles 16 560
|