![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > Algebraic topology
An Invitation to Computational Homotopy is an introduction to elementary algebraic topology for those with an interest in computers and computer programming. It expertly illustrates how the basics of the subject can be implemented on a computer through its focus on fully-worked examples designed to develop problem solving techniques. The transition from basic theory to practical computation raises a range of non-trivial algorithmic issues which will appeal to readers already familiar with basic theory and who are interested in developing computational aspects. The book covers a subset of standard introductory material on fundamental groups, covering spaces, homology, cohomology and classifying spaces as well as some less standard material on crossed modules. These topics are covered in a way that hints at potential applications of topology in areas of computer science and engineering outside the usual territory of pure mathematics, and also in a way that demonstrates how computers can be used to perform explicit calculations within the domain of pure algebraic topology itself. The initial chapters include in-depth examples from data mining, biology and digital image analysis, while the later chapters cover a range of computational examples on the cohomology of classifying spaces that are likely beyond the reach of a purely paper-and-pen approach to the subject. An Invitation to Computational Homotopy serves as a self-contained and informal introduction to these topics and their implementation in the sphere of computer science. Written in a dynamic and engaging style, it skilfully showcases a range of useful machine computations, and will serve as an invaluable aid to graduate students working with algebraic topology.
The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given. In order to make this work as self-contained as possible and also accessible to non-experts in Bruhat-Tits theory, the construction of the Bruhat-Tits building itself is given completely.
This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas.The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems.In this new edition, an article on Virtual Knot Theory and Khovanov Homology has beed added.
Bruhat-Tits theory that suffices for the main applications. Part III treats modern topics that have become important in current research. Part IV provides a few sample applications of the theory. The appendices contain further details on the topic of integral models.
In keeping with the general aim of the "D.M.V.-Seminar" series, this book is princi pally a report on a group of lectures held at Blaubeuren by Professors H. J. Baues, S. Halperin and J.-M. Lemaire, from October 30 to November 7, 1988. These lec tures were devoted to providing an introduction to the theory of models in algebraic homotopy. The three lecturers acted in concert to produce a coherent exposition of the theory. Commencing from a common starting point, each of them then proceeded naturally to his own subject of research. The reader who is already familiar with their scientific work will certainly give the lecturers their due. Having been asked by the speakers to take on the responsibility of writing down the notes, it seemed to me that the material elucidated in the short span of fifteen hours was too dense to appear, unedited, in book form. Some amplification was necessary. Of course I submitted to them the final version of this book, which received their approval. I thank them for this token of confidence. I am also grateful to all three for their help and advice in writing this book. I am particularly indebted to J.-M. Lemaire who was indeed very often consulted. For basic notions (in particular those concerning homotopy groups, CW complexes, (co)homology and homological algebra) the reader is advised to refer to the fundamental books written by E. H. Spanier [47], R. M. Switzer [49] and G. Whitehead [52].
In presenting this treatment of homological algebra, it is a pleasure to acknowledge the help and encouragement which I have had from all sides. Homological algebra arose from many sources in algebra and topology. Decisive examples came from the study of group extensions and their factor sets, a subject I learned in joint work with OTTO SCHIL LING. A further development of homological ideas, with a view to their topological applications, came in my long collaboration with SAMUEL ElLENBERG; to both collaborators, especial thanks. For many years the Air Force Office of Scientific Research supported my research projects on various subjects now summarized here; it is a pleasure to acknowledge their lively understanding of basic science. Both REINHOLD BAER and JOSEF SCHMID read and commented on my entire manuscript; their advice has led to many improvements. ANDERS KOCK and JACQUES RIGUET have read the entire galley proof and caught many slips and obscurities. Among the others whose sug gestions have served me well, I note FRANK ADAMS, LOUIS AUSLANDER, WILFRED COCKCROFT, ALBRECHT DOLD, GEOFFREY HORROCKS, FRIED RICH KASCH, JOHANN LEICHT, ARUNAS LIULEVICIUS, JOHN MOORE, DIE TER PUPPE, JOSEPH YAO, and a number of my current students at the University of Chicago - not to m ntion the auditors of my lectures at Chicago, Heidelberg, Bonn, Frankfurt, and Aarhus. My wife, DOROTHY, has cheerfully typed more versions of more chapters than she would like to count. Messrs."
In recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables. H. CARTAN and J. -P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be for mulated in terms of sheaf theory. These theorems imply many facts of function theory because the domains of holomorphy are holomorphically complete. They can also be applied to algebraic geometry because the complement of a hyperplane section of an algebraic manifold is holo morphically complete. J. -P. SERRE has obtained important results on algebraic manifolds by these and other methods. Recently many of his results have been proved for algebraic varieties defined over a field of arbitrary characteristic. K. KODAIRA and D. C. SPENCER have also applied sheaf theory to algebraic geometry with great success. Their methods differ from those of SERRE in that they use techniques from differential geometry (harmonic integrals etc. ) but do not make any use of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HODGE have dealt successfully with problems on integrals of the second kind on algebraic manifolds with the help of sheaf theory. I was able to work together with K. KODAIRA and D. C. SPENCER during a stay at the Institute for Advanced Study at Princeton from 1952 to 1954."
Springer-Verlag began publishing books in higher mathematics in
1920, when the series "Grundlehren der mathematischen"
"Wissenschaften," initially conceived as a series of advanced
textbooks, was founded by Richard Courant. A few years later, a new
series "Ergebnisse der Mathematik und Ihrer" "Grenzgebiete," survey
reports of recent mathematical research, was added.
Etale Cohomology is one of the most important methods in modern Algebraic Geometry and Number Theory. It has, in the last decades, brought fundamental new insights in arithmetic and algebraic geometric problems with many applications and many important results. The book gives a short and easy introduction into the world of Abelian Categories, Derived Functors, Grothendieck Topologies, Sheaves, General Etale Cohomology, and Etale Cohomology of Curves."
This book makes a systematic study of the relations between the etale cohomology of a scheme and the orderings of its residue fields. A major result is that in high degrees, etale cohomology is cohomology of the real spectrum. It also contains new contributions in group cohomology and in topos theory. It is of interest to graduate students and researchers who work in algebraic geometry (not only real) and have some familiarity with the basics of etale cohomology and Grothendieck sites. Independently, it is of interest to people working in the cohomology theory of groups or in topos theory.
Intended for use both as a text and a reference, this book is an exposition of the fundamental ideas of algebraic topology. The first third of the book covers the fundamental group, its definition and its application in the study of covering spaces. The focus then turns to homology theory, including cohomology, cup products, cohomology operations, and topological manifolds. The remaining third of the book is devoted to Homotropy theory, covering basic facts about homotropy groups, applications to obstruction theory, and computations of homotropy groups of spheres. In the later parts, the main emphasis is on the application to geometry of the algebraic tools developed earlier.
The equivariant derived category of sheaves is introduced. All
usual functors on sheaves are extended to the equivariant
situation. Some applications to the equivariant intersection
cohomology are given.
Symmetry has a strong impact on the number and shape of solutions to variational problems. This has been observed, for instance, in the search for periodic solutions of Hamiltonian systems or of the nonlinear wave equation; when one is interested in elliptic equations on symmetric domains or in the corresponding semiflows; and when one is looking for "special" solutions of these problems. This book is concerned with Lusternik-Schnirelmann theory and Morse-Conley theory for group invariant functionals. These topological methods are developed in detail with new calculations of the equivariant Lusternik-Schnirelmann category and versions of the Borsuk-Ulam theorem for very general classes of symmetry groups. The Morse-Conley theory is applied to bifurcation problems, in particular to the bifurcation of steady states and hetero-clinic orbits of O(3)-symmetric flows; and to the existence of periodic solutions nearequilibria of symmetric Hamiltonian systems. Some familiarity with the usualminimax theory and basic algebraic topology is assumed.
Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.
The papers in this collection, all fully refereed, original papers, reflect many aspects of recent significant advances in homotopy theory and group cohomology. From the Contents: A. Adem: On the geometry and cohomology of finite simple groups.- D.J. Benson: Resolutions and Poincar duality for finite groups.- C. Broto and S. Zarati: On sub-A*-algebras of H*V.- M.J. Hopkins, N.J. Kuhn, D.C. Ravenel: Morava K-theories of classifying spaces and generalized characters for finite groups.- K. Ishiguro: Classifying spaces of compact simple lie groups and p-tori.- A.T. Lundell: Concise tables of James numbers and some homotopyof classical Lie groups and associated homogeneous spaces.- J.R. Martino: Anexample of a stable splitting: the classifying space of the 4-dim unipotent group.- J.E. McClure, L. Smith: On the homotopy uniqueness of BU(2) at the prime 2.- G. Mislin: Cohomologically central elements and fusion in groups.
With one exception, these papers are original and fully refereed research articles on various applications of Category Theory to Algebraic Topology, Logic and Computer Science. The exception is an outstanding and lengthy survey paper by Joyal/Street (80 pp) on a growing subject: it gives an account of classical Tannaka duality in such a way as to be accessible to the general mathematical reader, and to provide a key for entry to more recent developments and quantum groups. No expertise in either representation theory or category theory is assumed. Topics such as the Fourier cotransform, Tannaka duality for homogeneous spaces, braided tensor categories, Yang-Baxter operators, Knot invariants and quantum groups are introduced and studies. From the Contents: P.J. Freyd: Algebraically complete categories.- J.M.E. Hyland: First steps in synthetic domain theory.- G. Janelidze, W. Tholen: How algebraic is the change-of-base functor?.- A. Joyal, R. Street: An introduction to Tannaka duality and quantum groups.- A. Joyal, M. Tierney: Strong stacks andclassifying spaces.- A. Kock: Algebras for the partial map classifier monad.- F.W. Lawvere: Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes.- S.H. Schanuel: Negative sets have Euler characteristic and dimension.-
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
The Pontryagin-van Kampen duality theorem and the Bochner theorem on positive-definite functions are known to be true for certain abelian topological groups that are not locally compact. The book sets out to present in a systematic way the existing material. It is based on the original notion of a nuclear group, which includes LCA groups and nuclear locally convex spaces together with their additive subgroups, quotient groups and products. For (metrizable, complete) nuclear groups one obtains analogues of the Pontryagin duality theorem, of the Bochner theorem and of the L vy-Steinitz theorem on rearrangement of series (an answer to an old question of S. Ulam). The book is written in the language of functional analysis. The methods used are taken mainly from geometry of numbers, geometry of Banach spaces and topological algebra. The reader is expected only to know the basics of functional analysis and abstract harmonic analysis.
The theory of surgery on manifolds has been generalized to categories of manifolds with group actions in several different ways. This book discusses some basic properties that such theories have in common. Special emphasis is placed on analogs of the fourfold periodicity theorems in ordinary surgery and the roles of standard general position hypotheses on the strata of manifolds with group actions. The contents of the book presuppose some familiarity with the basic ideas of surgery theory and transformation groups, but no previous knowledge of equivariant surgery is assumed. The book is designed to serve either as an introduction to equivariant surgery theory for advanced graduate students and researchers in related areas, or as an account of the authors' previously unpublished work on periodicity for specialists in surgery theory or transformation groups.
This book demonstrates the lively interaction between algebraic topology, very low dimensional topology and combinatorial group theory. Many of the ideas presented are still in their infancy, and it is hoped that the work here will spur others to new and exciting developments. Among the many techniques disussed are the use of obstruction groups to distinguish certain exact sequences and several graph theoretic techniques with applications to the theory of groups.
This book provides the first extensive and systematic treatment of the theory of commutative coherent rings. It blends, and provides a link, between the two sometimes disjoint approaches available in the literature, the ring theoretic approach, and the homological algebra approach. The book covers most results in commutative coherent ring theory known to date, as well as a number of results never published before. Starting with elementary results, the book advances to topics such as: uniform coherence, regular rings, rings of small homological dimensions, polynomial and power series rings, group rings and symmetric algebra over coherent rings. The subject of coherence is brought to the frontiers of research, exposing the open problems in the field. Most topics are treated in their fully generality, deriving the results on coherent rings as conclusions of the general theory. Thus, the book develops many of the tools of modern research in commutative algebra with a variety of examples and counterexamples. Although the book is essentially self-contained, basic knowledge of commutative and homological algebra is recommended. It addresses graduate students and researchers.
This selection of papers from the Beijing conference gives a cross-section of the current trends in the field of fixed point theory as seen by topologists and analysts. Apart from one survey article, they are all original research articles, on topics including equivariant theory, extensions of Nielsen theory, periodic orbits of discrete and continuous dynamical systems, and new invariants and techniques in topological approaches to analytic problems.
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
These are proceedings of an International Conference on Algebraic Topology, held 28 July through 1 August, 1986, at Arcata, California. The conference served in part to mark the 25th anniversary of the journal "Topology" and 60th birthday of Edgar H. Brown. It preceded ICM 86 in Berkeley, and was conceived as a successor to the Aarhus conferences of 1978 and 1982. Some thirty papers are included in this volume, mostly at a research level. Subjects include cyclic homology, H-spaces, transformation groups, real and rational homotopy theory, acyclic manifolds, the homotopy theory of classifying spaces, instantons and loop spaces, and complex bordism. |
![]() ![]() You may like...
My Disney Stars and Heroes American…
Tessa Lochowski
Digital product license key
R1,139
Discovery Miles 11 390
|