![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > Algebraic topology
Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds, a great geometrical idea due to R. Thom and H. Whitney. These sheaves, generalizing the local systems that are so ubiquitous in mathematics, have powerful applications to the topology of such singular spaces (mainly algebraic and analytic complex varieties). This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant)coefficients. The first 5 chapters introduce derived categories, direct and inverse images of sheaf complexes, Verdier duality, constructible and perverse sheaves, vanishing and characteristic cycles. They also discuss relations to D-modules and intersection cohomology. Later chapters apply this powerful tool to the study of the topology of singularities, polynomial functions and hyperplane arrangements. Some fundamental results, for which excellent sources exist, are not proved but just stated and illustrated by examples and corollaries. In this way, the reader is guided rather quickly from the basic theory to current research questions, supported in this by examples and exercises.
Cohomology of Drinfeld Modular Varieties aims to provide an introduction to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. This second volume is concerned with the ArthurSHSelberg trace formula, and to the proof in some cases of the Ramanujan-Petersson conjecture and the global Langlands conjecture for function fields. The author uses techniques that are extensions of those used to study Shimura varieties. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated. Several appendices on background material keep the work reasonably self-contained. This book will be of much interest to all researchers in algebraic number theory and representation theory.
This book is the result of reworking part of a rather lengthy course of lectures of which we delivered several versions at the Leningrad and Moscow Universities. In these lectures we presented an introduction to the fundamental topics of topology: homology theory, homotopy theory, theory of bundles, and topology of manifolds. The structure of the course was well determined by the guiding term elementary topology, whose main significance resides in the fact that it made us use a rather simple apparatus. tn this book we have retained {hose sections of the course where algebra plays a subordinate role. We plan to publish the more algebraic part of the lectures as a separate book. Reprocessing the lectures to produce the book resulted in the profits and losses inherent in such a situation: the rigour has increased to the detriment of the intuitiveness, the geometric descriptions have been replaced by formulas needing interpretations, etc. Nevertheless, it seems to us tha.t the book retains the main qualities of our lectures: their elementary, systematic, and pedagogical features. The preparation of the reader is assumed to be limi ted to the usual knowledge of set .theory, algebra, and calculus which mathematics students should master after the first year and a half of studies. The exposition is accompanied by examples and exercises. We hope that the book can be used as a topology textbook."
The ends of a topological space are the directions in which it becomes noncompact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behavior at infinity of a noncompact space. The second part studies tame ends in topology. The authors show tame ends to have a uniform structure, with a periodic shift map. They use approximate fibrations to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. This book will appeal to researchers in topology and geometry.
The Novikov Conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. The two volumes Novikov Conjectures, Index Theorems, and Rigidity are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) in September, 1993, on the subject of the title. They are intended to give a snapshot of the status of work on the Novikov Conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry, analysis. Volume 2 contains: fundamental long research papers on bounded K-theory and the assembly map in algebraic K-theory, and on Epsilon surgery theory; shorter research and survey papers on various topics related to the Novikov Conjecture.
The Novikov Conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) in September 1993, on the subject of 'Novikov Conjectures, Index Theorems and Rigidity'. They are intended to give a snapshot of the status of work on the Novikov Conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry and analysis. Volume 1 contains: * A detailed historical survey and bibliography of the Novikov Conjecture and of related subsequent developments, including an annotated reprint (both in the original Russian and in English translation) of Novikov's original 1970 statement of his conjecture * An annotated problem list * The texts of several important unpublished classic papers by Milnor, Browder, and Kasparov * Research/survey papers on the Novikov Conjecture by Ferry/Weinberger, Gromov, Mishchenko, Quinn, Ranicki, and Rosenberg.
The book gathers the lectures given at the C.I.M.E. summer school "Quantum Cohomology" held in Cetraro (Italy) from June 30th to July 8th, 1997. The lectures and the subsequent updating cover a large spectrum of the subject on the field, from the algebro-geometric point of view, to the symplectic approach, including recent developments of string-branes theories and q-hypergeometric functions.
This book consists essentially of notes which were written for an Advanced Course on Classifying Spaces and Cohomology of Groups. The course took place at the Centre de Recerca Mathematica (CRM) in Bellaterra from May 27 to June 2, 1998 and was part of an emphasis semester on Algebraic Topology. It consisted of two parallel series of 6 lectures of 90 minutes each and was intended as an introduction to new homotopy theoretic methods in group cohomology. The first part of the book is concerned with methods of decomposing the classifying space of a finite group into pieces made of classifying spaces of appropriate subgroups. Such decompositions have been used with great success in the last 10-15 years in the homotopy theory of classifying spaces of compact Lie groups and p-compact groups in the sense of Dwyer and Wilkerson. For simplicity the emphasis here is on finite groups and on homological properties of various decompositions known as centralizer resp. normalizer resp. subgroup decomposition. A unified treatment of the various decompositions is given and the relations between them are explored. This is preceeded by a detailed discussion of basic notions such as classifying spaces, simplicial complexes and homotopy colimits.
Successive waves of migrant concepts, largely from mathematical physics, have stimulated the study of vector bundles over algebraic varieties in the past few years. But the subject has retained its roots in old questions concerning subvarieties of projective space. The 1993 Durham Symposium on vector bundles in algebraic geometry brought together some of the leading researchers in the field to further explore these interactions. This book is a collection of survey articles by the main speakers at the Symposium and presents to the mathematical world an overview of the key areas of research involving vector bundles. Topics include augmented bundles and coherent systems which link gauge theory and geometric invariant theory; Donaldson invariants of algebraic surfaces; Floer homology and quantum cohomology; conformal field theory and the moduli spaces of bundles on curves; the Horrocks-Mumford bundle and codimension 2 subvarieties in p4 and p5; and exceptional bundles and stable sheaves on projective space. This book will appeal greatly to mathematicians working in algebraic geometry and areas adjoining mathematical physics.
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems. In the second edition, some material has been expanded for better comprehension.
From the reviews:"The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature...(S.Y. Husseini in Mathematical Reviews, 1976)
Computational engineering is the treatment of engineering tasks with computers. It is based on computational mathematics, which is presented here in a comprehensive handbook. Engineers and scientists who deal with engineering tasks have to handle large amounts of information, which must be created and structured in a systematic manner. This demands a high level of abstraction and therefore knowledge of the mathematical foundations. From the existing rich repertoire of mathematical theories and methods, the fundamentals of engineering computation are selected and presented in a coherent fashion. They are brought into a suitable order for specific engineering purposes, and their significance for typical applications is shown. The relevant definitions, notations and theories are presented in a durable form which is independent of the fast development of information and communication technology.
This book presents a definitive account of the applications of the algebraic L-theory to the surgery classification of topological manifolds. The central result is the identification of a manifold structure in the homotopy type of a Poincare duality space with a local quadratic structure in the chain homotopy type of the universal cover. The difference between the homotopy types of manifolds and Poincare duality spaces is identified with the fibre of the algebraic L-theory assembly map, which passes from local to global quadratic duality structures on chain complexes. The algebraic L-theory assembly map is used to give a purely algebraic formulation of the Novikov conjectures on the homotopy invariance of the higher signatures; any other formulation necessarily factors through this one. The book is designed as an introduction to the subject, accessible to graduate students in topology; no previous acquaintance with surgery theory is assumed, and every algebraic concept is justified by its occurrence in topology.
This updated and expanded second edition of an established text presents a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the superanalogs of all the basic structures of ordinary manifold theory.
This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra.
J. Frank Adams had a profound influence on algebraic topology, and his works continue to shape its development. The International Symposium on Algebraic Topology held in Manchester during July 1990 was dedicated to his memory, and virtually all of the world's leading experts took part. This two volume work constitutes the proceedings of the symposium; the articles contained here range from overviews to reports of work still in progress, as well as a survey and complete bibliography of Adams' own work. These proceedings form an important compendium of current research in algebraic topology, and one that demonstrates the depth of Adams' many contributions to the subject. This second volume is oriented towards stable homotopy theory, the Steenrod algebra and the Adams spectral sequence. In the first volume the theme is mainly unstable homotopy theory, homological and categorical algebra.
J. Frank Adams had a profound influence on algebraic topology, and his works continue to shape its development. The International Symposium on Algebraic Topology held in Manchester during July 1990 was dedicated to his memory, and virtually all of the world's leading experts took part. This two volume work constitutes the proceedings of the symposium; the articles contained here range from overviews to reports of work still in progress, as well as a survey and complete bibliography of Adams' own work. These proceedings form an important compendium of current research in algebraic topology, and one that demonstrates the depth of Adams' many contributions to the subject. Here in the first volume the theme is mainly unstable homotopy theory, homological and categorical algebra. The second volume is oriented towards stable homotopy theory, the Steenrod algebra and the Adams spectral sequence.
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin K hler manifolds such as Riemannian tensors and K hler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
This volume contains a re-edition of Max Koecher's famous Minnesota Notes. The main objects are homogeneous, but not necessarily convex, cones. They are described in terms of Jordan algebras. The central point is a correspondence between semisimple real Jordan algebras and so-called omega-domains. This leads to a construction of half-spaces which give an essential part of all bounded symmetric domains. The theory is presented in a concise manner, with only elementary prerequisites. The editors have added notes on each chapter containing an account of the relevant developments of the theory since these notes were first written.
This book describes the representations of Lie superalgebras that are yielded by a graded version of Hudson-Parthasarathy quantum stochastic calculus. Quantum stochastic calculus and grading theory are given concise introductions, extending readership to mathematicians and physicists with a basic knowledge of algebra and infinite-dimensional Hilbert spaces. The develpment of an explicit formula for the chaotic expansion of a polynomial of quantum stochastic integrals is particularly interesting. The book aims to provide a self-contained exposition of what is known about Z_2-graded quantum stochastic calculus and to provide a framework for future research into this new and fertile area.
This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory.
This book is based on a course taught to an audience of undergraduate and graduate students at Oxford, and can be viewed as a bridge between the study of metric spaces and general topological spaces. About half the book is devoted to relatively little-known results, much of which is published here for the first time. The author sketches a theory of uniform transformation groups, leading to the theory of uniform spaces over a base and hence to the theory of uniform covering spaces. Readers interested in general topology will find much to interest them here.
From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996
From the reviews: "This volume... consists of two papers. The
first, written by V.V. Shokurov, is devoted to the theory of
Riemann surfaces and algebraic curves. It is an excellent overview
of the theory of relations between Riemann surfaces and their
models - complex algebraic curves in complex projective spaces. ...
The second paper, written by V.I. Danilov, discusses algebraic
varieties and schemes. ... I can recommend the book as a very good
introduction to the basic algebraic geometry." "European
Mathematical Society" "Newsletter, 1996" |
You may like...
Protein Folding in Silico - Protein…
Irena Roterman-Konieczna
Hardcover
R3,855
Discovery Miles 38 550
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
|