![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > Algebraic topology
Aimed at graduate students, this textbook provides an accessible and comprehensive introduction to operator theory. Rather than discuss the subject in the abstract, this textbook covers the subject through twenty examples of a wide variety of operators, discussing the norm, spectrum, commutant, invariant subspaces, and interesting properties of each operator. The text is supplemented by over 600 end-of-chapter exercises, designed to help the reader master the topics covered in the chapter, as well as providing an opportunity to further explore the vast operator theory literature. Each chapter also contains well-researched historical facts which place each chapter within the broader context of the development of the field as a whole.
Excellent text for upper-level undergraduate and graduate students shows how geometric and algebraic ideas met and grew together into an important branch of mathematics. Lucid coverage of vector fields, surfaces, homology of complexes, much more. Some knowledge of differential equations and multivariate calculus required. Many problems and exercises (some solutions) integrated into the text. 1979 edition. Bibliography.
This book provides an introduction to modern homotopy theory through the lens of higher categories after Joyal and Lurie, giving access to methods used at the forefront of research in algebraic topology and algebraic geometry in the twenty-first century. The text starts from scratch - revisiting results from classical homotopy theory such as Serre's long exact sequence, Quillen's theorems A and B, Grothendieck's smooth/proper base change formulas, and the construction of the Kan-Quillen model structure on simplicial sets - and develops an alternative to a significant part of Lurie's definitive reference Higher Topos Theory, with new constructions and proofs, in particular, the Yoneda Lemma and Kan extensions. The strong emphasis on homotopical algebra provides clear insights into classical constructions such as calculus of fractions, homotopy limits and derived functors. For graduate students and researchers from neighbouring fields, this book is a user-friendly guide to advanced tools that the theory provides for application.
This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. The book studies a variety of maps, which are continuous functions between spaces. It also reveals the importance of algebraic topology in contemporary mathematics, theoretical physics, computer science, chemistry, economics, and the biological and medical sciences, and encourages students to engage in further study.
This volume is an original collection of articles by 44 leading mathematicians on the theme of the future of the discipline. The contributions range from musings on the future of specific fields, to analyses of the history of the discipline, to discussions of open problems and conjectures, including first solutions of unresolved problems. Interestingly, the topics do not cover all of mathematics, but only those deemed most worthy to reflect on for future generations. These topics encompass the most active parts of pure and applied mathematics, including algebraic geometry, probability, logic, optimization, finance, topology, partial differential equations, category theory, number theory, differential geometry, dynamical systems, artificial intelligence, theory of groups, mathematical physics and statistics.
The book by Borel and Wallach is a classic treatment of the use of cohomology in representation theory, particularly in the setting of automorphic forms and discrete subgroups. The authors begin with general material, covering Lie algebra cohomology, as well as continuous and differentiable cohomology. Much of the machinery is designed for the study of the cohomology of locally symmetric spaces, realized as double coset spaces, where the quotient is by a maximal compact subgroup and by a discrete subgroup. Such spaces are central to applications to number theory and the study of automorphic forms. The authors give a careful presentation of relative Lie algebra cohomology of admissible and of unitary $G$-modules. As part of the general development, the Langlands classification of irreducible admissible representations is given. Computations of important examples are another valuable part of the book. In the twenty years between the first and second editions of this work, there was immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. The second edition is a corrected and expanded version of the original, which was an important catalyst in the growth of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the two intervening decades.
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.
In many areas of mathematics some "higher operations" are arising. These havebecome so important that several research projects refer to such expressions. Higher operationsform new types of algebras. The key to understanding and comparing them, to creating invariants of their action is operad theory. This is a point of view that is 40 years old in algebraic topology, but the new trend is its appearance in several other areas, such as algebraic geometry, mathematical physics, differential geometry, and combinatorics. The present volume is the first comprehensive and systematic approach to algebraic operads. An operad is an algebraic device that serves to study all kinds of algebras (associative, commutative, Lie, Poisson, A-infinity, etc.) from a conceptual point of view. The book presents this topic with an emphasis on Koszul duality theory. After a modern treatment of Koszul duality for associative algebras, the theory is extended to operads. Applications to homotopy algebra are given, for instance the Homotopy Transfer Theorem. Although the necessary notions of algebra are recalled, readers are expected to be familiar with elementary homological algebra. Each chapter ends with a helpful summary and exercises. A full chapter is devoted to examples, and numerous figures are included. After a low-level chapter on Algebra, accessible to (advanced) undergraduate students, the level increases gradually through the book. However, the authors have done their best to make it suitable for graduate students: three appendicesreview the basic results needed in order to understand the various chapters. Since higher algebra is becoming essential in several research areas like deformation theory, algebraic geometry, representation theory, differential geometry, algebraic combinatorics, and mathematical physics, the book can also be used as a reference work by researchers. "
Geometry in ancient Greece is said to have originated in the curiosity of mathematicians about the shapes of crystals, with that curiosity culminating in the classification of regular convex polyhedra addressed in the final volume of Euclid's Elements. Since then, geometry has taken its own path and the study of crystals has not been a central theme in mathematics, with the exception of Kepler's work on snowflakes. Only in the nineteenth century did mathematics begin to play a role in crystallography as group theory came to be applied to the morphology of crystals. This monograph follows the Greek tradition in seeking beautiful shapes such as regular convex polyhedra. The primary aim is to convey to the reader how algebraic topology is effectively used to explore the rich world of crystal structures. Graph theory, homology theory, and the theory of covering maps are employed to introduce the notion of the topological crystal which retains, in the abstract, all the information on the connectivity of atoms in the crystal. For that reason the title Topological Crystallography has been chosen. Topological crystals can be described as "living in the logical world, not in space," leading to the question of how to place or realize them "canonically" in space. Proposed here is the notion of standard realizations of topological crystals in space, including as typical examples the crystal structures of diamond and lonsdaleite. A mathematical view of the standard realizations is also provided by relating them to asymptotic behaviors of random walks and harmonic maps. Furthermore, it can be seen that a discrete analogue of algebraic geometry is linked to the standard realizations. Applications of the discussions in this volume include not only a systematic enumeration of crystal structures, an area of considerable scientific interest for many years, but also the architectural design of lightweight rigid structures. The reader therefore can see the agreement of theory and practice.
This unique and comprehensive volume provides an up-to-date account of the literature on the subject of determining the structure of rings over which cyclic modules or proper cyclic modules have a finiteness condition or a homological property. The finiteness conditions and homological properties are closely interrelated in the sense that either hypothesis induces the other in some form. This is the first book to bring all of this important material on the subject together. Over the last 25 years or more numerous mathematicians have investigated rings whose factor rings or factor modules have a finiteness condition or a homological property. They made important contributions leading to new directions and questions, which are listed at the end of each chapter for the benefit of future researchers. There is a wealth of material on the topic which is combined in this book, it contains more than 200 references and is not claimed to be exhaustive. This book will appeal to graduate students, researchers, and professionals in algebra with a knowledge of basic noncommutative ring theory, as well as module theory and homological algebra, equivalent to a one-year graduate course in the theory of rings and modules.
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
This book outlines a vast array of techniques and methods regarding model categories, without focussing on the intricacies of the proofs. Quillen model categories are a fundamental tool for the understanding of homotopy theory. While many introductions to model categories fall back on the same handful of canonical examples, the present book highlights a large, self-contained collection of other examples which appear throughout the literature. In particular, it collects a highly scattered literature into a single volume. The book is aimed at anyone who uses, or is interested in using, model categories to study homotopy theory. It is written in such a way that it can be used as a reference guide for those who are already experts in the field. However, it can also be used as an introduction to the theory for novices.
This book serves as a textbook in real analysis. It focuses on the fundamentals of the structural properties of metric spaces and analytical properties of functions defined between such spaces. Topics include sets, functions and cardinality, real numbers, analysis on R, topology of the real line, metric spaces, continuity and differentiability, sequences and series, Lebesgue integration, and Fourier series. It is primarily focused on the applications of analytical methods to solving partial differential equations rooted in many important problems in mathematics, physics, engineering, and related fields. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volumes that provide a self-contained account of the subject as it stands today. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here.
Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volumes that provide a self-contained account of the subject as it stands. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here.
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s.The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors's lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.
This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory's most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.
Probability theory has become a convenient language and a useful tool in many areas of modern analysis. The main purpose of this book is to explore part of this connection concerning the relations between Brownian motion on a manifold and analytical aspects of differential geometry. A dominant theme of the book is the probabilistic interpretation of the curvature of a manifold.The book begins with a brief review of stochastic differential equations on Euclidean space. After presenting the basics of stochastic analysis on manifolds, the author introduces Brownian motion on a Riemannian manifold and studies the effect of curvature on its behavior. He then applies Brownian motion to geometric problems and vice versa, using many well-known examples, e.g., short-time behavior of the heat kernel on a manifold and probabilistic proofs of the Gauss-Bonnet-Chem theorem and the Atiyah-Singer index theorem for Dirac operators. The book concludes with an introduction to stochastic analysis on the path space over a Riemannian manifold.
From the reviews:"The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature...(S.Y. Husseini in Mathematical Reviews, 1976)
A fundamental element of the study of 3-manifolds is Thurston's remarkable geometrization conjecture, which states that the interior of every compact 3-manifold has a canonical decomposition into pieces that have geometric structures. In most cases, these structures are complete metrics of constant negative curvature, that is to say, they are hyperbolic manifolds. The conjecture has been proved in some important cases, such as Haken manifolds and certain types of fibered manifolds. The influence of Thurston's hyperbolization theorem on the geometry and topology of 3-manifolds has been tremendous. This book presents a complete proof of the hyperbolization theorem for 3-manifolds that fiber over the circle, following the plan of Thurston's original (unpublished) proof, though the double limit theorem is dealt with in a different way. The book should be suitable for graduate students with a background in modern techniques of low-dimensional topology and will also be of interest to researchers in geometry and topology. This is the English translation of a volume originally published in 1996 by the Societe Mathematique de France.
This book, the third book in the four-volume series in algebra, deals with important topics in homological algebra, including abstract theory of derived functors, sheaf co-homology, and an introduction to etale and l-adic co-homology. It contains four chapters which discuss homology theory in an abelian category together with some important and fundamental applications in geometry, topology, algebraic geometry (including basics in abstract algebraic geometry), and group theory. The book will be of value to graduate and higher undergraduate students specializing in any branch of mathematics. The author has tried to make the book self-contained by introducing relevant concepts and results required. Prerequisite knowledge of the basics of algebra, linear algebra, topology, and calculus of several variables will be useful.
This book carefully presents a unified treatment of equivariant Poincare duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
This comprehensive text focuses on the homotopical technology in use at the forefront of modern algebraic topology. Following on from a standard introductory algebraic topology sequence, it will provide students with a comprehensive background in spectra and structured ring spectra. Each chapter is an extended tutorial by a leader in the field, offering the first really accessible treatment of the modern construction of the stable category in terms of both model categories of point-set diagram spectra and infinity-categories. It is one of the only textbook sources for operadic algebras, structured ring spectra, and Bousfield localization, which are now basic techniques in the field, and the book provides a rare expository treatment of spectral algebraic geometry. Together the contributors - Emily Riehl, Daniel Dugger, Clark Barwick, Michael A. Mandell, Birgit Richter, Tyler Lawson, and Charles Rezk - offer a complete, authoritative source to learn the foundations of this vibrant area.
K-theory is often considered a complicated `specialist's' theory. This book is an introduction to the basics and provides detailed explanation of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed and then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity. |
![]() ![]() You may like...
Flood Risk Management and Response
David Proverbs, C.A. Brebbia
Hardcover
R3,635
Discovery Miles 36 350
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R7,211
Discovery Miles 72 110
Landscape Architecture for Sea Level…
Galen D Newman, Zixu Qiao
Paperback
R1,152
Discovery Miles 11 520
Machine Learning for Authorship…
Farkhund Iqbal, Mourad Debbabi, …
Hardcover
R4,576
Discovery Miles 45 760
Understanding the EU as a Good Global…
Elaine Fahey, Isabella Mancini
Hardcover
R3,482
Discovery Miles 34 820
Flood Control Management for the City…
Mashael Mohammed Al Saud
Hardcover
R3,481
Discovery Miles 34 810
Biomedical Image Analysis and Mining…
Wahiba Ben Abdessalem Karaa, Nilanjan Dey
Hardcover
R6,081
Discovery Miles 60 810
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,171
Discovery Miles 41 710
|