![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > Algebraic topology
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
This book outlines a vast array of techniques and methods regarding model categories, without focussing on the intricacies of the proofs. Quillen model categories are a fundamental tool for the understanding of homotopy theory. While many introductions to model categories fall back on the same handful of canonical examples, the present book highlights a large, self-contained collection of other examples which appear throughout the literature. In particular, it collects a highly scattered literature into a single volume. The book is aimed at anyone who uses, or is interested in using, model categories to study homotopy theory. It is written in such a way that it can be used as a reference guide for those who are already experts in the field. However, it can also be used as an introduction to the theory for novices.
This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.
Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volumes that provide a self-contained account of the subject as it stands today. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here.
Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volumes that provide a self-contained account of the subject as it stands. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here.
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s.The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors's lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.
This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory's most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.
From the reviews:"The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature...(S.Y. Husseini in Mathematical Reviews, 1976)
A fundamental element of the study of 3-manifolds is Thurston's remarkable geometrization conjecture, which states that the interior of every compact 3-manifold has a canonical decomposition into pieces that have geometric structures. In most cases, these structures are complete metrics of constant negative curvature, that is to say, they are hyperbolic manifolds. The conjecture has been proved in some important cases, such as Haken manifolds and certain types of fibered manifolds. The influence of Thurston's hyperbolization theorem on the geometry and topology of 3-manifolds has been tremendous. This book presents a complete proof of the hyperbolization theorem for 3-manifolds that fiber over the circle, following the plan of Thurston's original (unpublished) proof, though the double limit theorem is dealt with in a different way. The book should be suitable for graduate students with a background in modern techniques of low-dimensional topology and will also be of interest to researchers in geometry and topology. This is the English translation of a volume originally published in 1996 by the Societe Mathematique de France.
This book, the third book in the four-volume series in algebra, deals with important topics in homological algebra, including abstract theory of derived functors, sheaf co-homology, and an introduction to etale and l-adic co-homology. It contains four chapters which discuss homology theory in an abelian category together with some important and fundamental applications in geometry, topology, algebraic geometry (including basics in abstract algebraic geometry), and group theory. The book will be of value to graduate and higher undergraduate students specializing in any branch of mathematics. The author has tried to make the book self-contained by introducing relevant concepts and results required. Prerequisite knowledge of the basics of algebra, linear algebra, topology, and calculus of several variables will be useful.
This book carefully presents a unified treatment of equivariant Poincare duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019
Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available.
Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available.
Homological mirror symmetry has its origins in theoretical physics but is now of great interest in mathematics due to the deep connections it reveals between different areas of geometry and algebra. This book offers a self-contained and accessible introduction to the subject via the representation theory of algebras and quivers. It is suitable for graduate students and others without a great deal of background in homological algebra and modern geometry. Each part offers a different perspective on homological mirror symmetry. Part I introduces the A-infinity formalism and offers a glimpse of mirror symmetry using representations of quivers. Part II discusses various A- and B-models in mirror symmetry and their connections through toric and tropical geometry. Part III deals with mirror symmetry for Riemann surfaces. The main mathematical ideas are illustrated by means of simple examples coming mainly from the theory of surfaces, helping the reader connect theory with intuition.
The long-standing Kervaire invariant problem in homotopy theory arose from geometric and differential topology in the 1960s and was quickly recognised as one of the most important problems in the field. In 2009 the authors of this book announced a solution to the problem, which was published to wide acclaim in a landmark Annals of Mathematics paper. The proof is long and involved, using many sophisticated tools of modern (equivariant) stable homotopy theory that are unfamiliar to non-experts. This book presents the proof together with a full development of all the background material to make it accessible to a graduate student with an elementary algebraic topology knowledge. There are explicit examples of constructions used in solving the problem. Also featuring a motivating history of the problem and numerous conceptual and expository improvements on the proof, this is the definitive account of the resolution of the Kervaire invariant problem.
This text organizes a range of results in chromatic homotopy theory, running a single thread through theorems in bordism and a detailed understanding of the moduli of formal groups. It emphasizes the naturally occurring algebro-geometric models that presage the topological results, taking the reader through a pedagogical development of the field. In addition to forming the backbone of the stable homotopy category, these ideas have found application in other fields: the daughter subject 'elliptic cohomology' abuts mathematical physics, manifold geometry, topological analysis, and the representation theory of loop groups. The common language employed when discussing these subjects showcases their unity and guides the reader breezily from one domain to the next, ultimately culminating in the construction of Witten's genus for String manifolds. This text is an expansion of a set of lecture notes for a topics course delivered at Harvard University during the spring term of 2016.
Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories.
This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.
Intersection homology is a version of homology theory that extends Poincare duality and its applications to stratified spaces, such as singular varieties. This is the first comprehensive expository book-length introduction to intersection homology from the viewpoint of singular and piecewise-linear chains. Recent breakthroughs have made this approach viable by providing intersection homology and cohomology versions of all the standard tools in the homology tool box, making the subject readily accessible to graduate students and researchers in topology as well as researchers from other fields. This text includes both new research material and new proofs of previously-known results in intersection homology, as well as treatments of many classical topics in algebraic and manifold topology. Written in a detailed but expository style, this book is suitable as an introduction to intersection homology or as a thorough reference.
Intersection theory has played a prominent role in the study of closed symplectic 4-manifolds since Gromov's famous 1985 paper on pseudoholomorphic curves, leading to myriad beautiful rigidity results that are either inaccessible or not true in higher dimensions. Siefring's recent extension of the theory to punctured holomorphic curves allowed similarly important results for contact 3-manifolds and their symplectic fillings. Based on a series of lectures for graduate students in topology, this book begins with an overview of the closed case, and then proceeds to explain the essentials of Siefring's intersection theory and how to use it, and gives some sample applications in low-dimensional symplectic and contact topology. The appendices provide valuable information for researchers, including a concise reference guide on Siefring's theory and a self-contained proof of a weak version of the Micallef-White theorem.
Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
This book introduces the reader to the most important concepts and problems in the field of (2)-invariants. After some foundational material on group von Neumann algebras, (2)-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of (2)-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of (2)-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Luck's approximation theorem and its generalizations. The final chapter deals with (2)-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course.
This monograph initiates a theory of new categorical structures that generalize the simplicial Segal property to higher dimensions. The authors introduce the notion of a d-Segal space, which is a simplicial space satisfying locality conditions related to triangulations of d-dimensional cyclic polytopes. Focus here is on the 2-dimensional case. Many important constructions are shown to exhibit the 2-Segal property, including Waldhausen's S-construction, Hecke-Waldhausen constructions, and configuration spaces of flags. The relevance of 2-Segal spaces in the study of Hall and Hecke algebras is discussed. Higher Segal Spaces marks the beginning of a program to systematically study d-Segal spaces in all dimensions d. The elementary formulation of 2-Segal spaces in the opening chapters is accessible to readers with a basic background in homotopy theory. A chapter on Bousfield localizations provides a transition to the general theory, formulated in terms of combinatorial model categories, that features in the main part of the book. Numerous examples throughout assist readers entering this exciting field to move toward active research; established researchers in the area will appreciate this work as a reference. |
![]() ![]() You may like...
Big English Plus 2 Pupil's Book with…
Mario Herrera, Christopher Sol Cruz
Paperback
R1,500
Discovery Miles 15 000
Budgeting for the Military Sector in…
Wuyi Omitoogun, Eboe Hutchful
Hardcover
R3,831
Discovery Miles 38 310
|