![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Coding theory & cryptology
YUNMIN ZHU In the past two decades, multi sensor or multi-source information fusion tech niques have attracted more and more attention in practice, where observations are processed in a distributed manner and decisions or estimates are made at the individual processors, and processed data (or compressed observations) are then transmitted to a fusion center where the final global decision or estimate is made. A system with multiple distributed sensors has many advantages over one with a single sensor. These include an increase in the capability, reliability, robustness and survivability of the system. Distributed decision or estimation fusion prob lems for cases with statistically independent observations or observation noises have received significant attention (see Varshney's book Distributed Detec tion and Data Fusion, New York: Springer-Verlag, 1997, Bar-Shalom's book Multitarget-Multisensor Tracking: Advanced Applications, vol. 1-3, Artech House, 1990, 1992,2000). Problems with statistically dependent observations or observation noises are more difficult and have received much less study. In practice, however, one often sees decision or estimation fusion problems with statistically dependent observations or observation noises. For instance, when several sensors are used to detect a random signal in the presence of observation noise, the sensor observations could not be statistically independent when the signal is present. This book provides a more complete treatment of the fundamentals of multi sensor decision and estimation fusion in order to deal with general random ob servations or observation noises that are correlated across the sensors."
This volume brings together a multidisciplinary group of scholars from diverse fields including computer science, engineering, archival science, law, business, psychology, economics, medicine and more to discuss the trade-offs between different "layers" in designing the use of blockchain/Distributed Ledger Technology (DLT) for social trust, trust in data and records, and trust in systems. Blockchain technology has emerged as a solution to the problem of trust in data and records, as well as trust in social, political and economic institutions, due to its profound potential as a digital trust infrastructure. Blockchain is a DLT in which confirmed and validated sets of transactions are stored in blocks that are chained together to make tampering more difficult and render records immutable. This book is dedicated to exploring and disseminating the latest findings on the relationships between socio-political and economic data, record-keeping, and technical aspects of blockchain.
This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI'2017 - Geometric Science of Information.
The idea of this book comes from the observation that sensor networks represent a topic of interest from both theoretical and practical perspectives. The title und- lines that sensor networks offer the unique opportunity of clearly linking theory with practice. In fact, owing to their typical low-cost, academic researchers have the opportunity of implementing sensor network testbeds to check the validity of their theories, algorithms, protocols, etc., in reality. Likewise, a practitioner has the opportunity of understanding what are the principles behind the sensor networks under use and, thus, how to properly tune some accessible network parameters to improve the performance. On the basis of the observations above, the book has been structured in three parts: PartIisdenotedas"Theory,"sincethetopicsofits vechaptersareapparently "detached" from real scenarios; Part II is denoted as "Theory and Practice," since the topics of its three chapters, altough theoretical, have a clear connection with speci c practical scenarios; Part III is denoted as "Practice," since the topics of its ve chapters are clearly related to practical applications.
This book constitutes the proceedings of the 15th IFIP WG 11.12 International Symposium on Human Aspects of Information Security and Assurance, HAISA 2021, held virtually in July 2021.The 18 papers presented in this volume were carefully reviewed and selected from 30 submissions. They are organized in the following topical sections: attitudes and perspectives; cyber security education; and people and technology.
Information theory is an exceptional field in many ways. Technically, it is one of the rare fields in which mathematical results and insights have led directly to significant engineering payoffs. Professionally, it is a field that has sustained a remarkable degree of community, collegiality and high standards. James L. Massey, whose work in the field is honored here, embodies the highest standards of the profession in his own career. The book covers the latest work on: block coding, convolutional coding, cryptography, and information theory. The 44 contributions represent a cross-section of the world's leading scholars, scientists and researchers in information theory and communication. The book is rounded off with an index and a bibliography of publications by James Massey.
The authors give a detailed summary about the fundamentals and the historical background of digital communication. This includes an overview of the encoding principles and algorithms of textual information, audio information, as well as images, graphics, and video in the Internet. Furthermore the fundamentals of computer networking, digital security and cryptography are covered. Thus, the book provides a well-founded access to communication technology of computer networks, the internet and the WWW. Numerous pictures and images, a subject-index and a detailed list of historical personalities including a glossary for each chapter increase the practical benefit of this book that is well suited as well as for undergraduate students as for working practitioners.
This clearly written and enlightening textbook provides a concise, introductory guide to the key mathematical concepts and techniques used by computer scientists. Topics and features: ideal for self-study, offering many pedagogical features such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; places our current state of knowledge within the context of the contributions made by early civilizations, such as the ancient Babylonians, Egyptians and Greeks; examines the building blocks of mathematics, including sets, relations and functions; presents an introduction to logic, formal methods and software engineering; explains the fundamentals of number theory, and its application in cryptography; describes the basics of coding theory, language theory, and graph theory; discusses the concept of computability and decideability; includes concise coverage of calculus, probability and statistics, matrices, complex numbers and quaternions.
Modern cryptology increasingly employs mathematically rigorous concepts and methods from complexity theory. Conversely, current research topics in complexity theory are often motivated by questions and problems from cryptology. This book takes account of this situation, and therefore its subject is what may be dubbed "cryptocomplexity'', a kind of symbiosis of these two areas. This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation. Moreover, it may serve as a valuable source for researchers, teachers, and practitioners working in these fields. Starting from scratch, it works its way to the frontiers of current research in these fields and provides a detailed overview of their history and their current research topics and challenges.
Cryptography is a field that is constantly advancing, due to exponential growth in new technologies within the past few decades. Applying strategic algorithms to cryptic issues can help save time and energy in solving the expanding problems within this field. Algorithmic Strategies for Solving Complex Problems in Cryptography is an essential reference source that discusses the evolution and current trends in cryptology, and it offers new insight into how to use strategic algorithms to aid in solving intricate difficulties within this domain. Featuring relevant topics such as hash functions, homomorphic encryption schemes, two party computation, and integer factoring, this publication is ideal for academicians, graduate students, engineers, professionals, and researchers interested in expanding their knowledge of current trends and techniques within the cryptology field.
The book is concerned with contemporary methodologies used for automatic text summarization. It proposes interesting approaches to solve well-known problems on text-summarization using computational intelligence (CI) techniques including cognitive approaches. A better understanding of the cognitive basis of the summarization task is still an open research issue, an extent of its use in text summarization is highlighted for further exploration. With the ever-growing text and people on research has little time to spare for extensive reading, where, summarized information helps for a better understanding of the context at a shorter time. This book helps students and researchers to automatically summarize the text documents in an efficient and effective way. The computational approaches and the research techniques presented guides to achieve text summarization at ease. The summarized text generated supports readers to learn the context or the domain at a quicker pace. The book is presented with reasonable amount of illustrations and examples convenient for the readers to understand and implement for their use. The book is not to make readers understand what text summarization is, but for people to perform text summarization using various approaches. This also describes measures that can help to evaluate, determine and explore the best possibilities for text summarization to analyse and use for any specific purpose. The illustration is based on social media and healthcare domain, which shows the possibilities to work with any domain for summarization. The new approach for text summarization based on cognitive intelligence is presented for further exploration in the field.
Genetic programming (GP), one of the most advanced forms of evolutionary computation, has been highly successful as a technique for getting computers to automatically solve problems without having to tell them explicitly how. Since its inceptions more than ten years ago, GP has been used to solve practical problems in a variety of application fields. Along with this ad-hoc engineering approaches interest increased in how and why GP works. This book provides a coherent consolidation of recent work on the theoretical foundations of GP. A concise introduction to GP and genetic algorithms (GA) is followed by a discussion of fitness landscapes and other theoretical approaches to natural and artificial evolution. Having surveyed early approaches to GP theory it presents new exact schema analysis, showing that it applies to GP as well as to the simpler GAs. New results on the potentially infinite number of possible programs are followed by two chapters applying these new techniques.
This book explores alternative ways of accomplishing secure information transfer with incoherent multi-photon pulses in contrast to conventional Quantum Key Distribution techniques. Most of the techniques presented in this book do not need conventional encryption. Furthermore, the book presents a technique whereby any symmetric key can be securely transferred using the polarization channel of an optical fiber for conventional data encryption. The work presented in this book has largely been practically realized, albeit in a laboratory environment, to offer proof of concept rather than building a rugged instrument that can withstand the rigors of a commercial environment.
The working group WG 11.4 of IFIP ran an iNetSec conference a few times in the past, sometimes together with IFIP security conference, sometimes as a stand-alone workshop with a program selected from peer-reviewed submissions. When we were elected to chair WG 11.4 we asked ourselveswhether the security and also the computer science community at large bene?ts from this workshop. In particular, as there aremany (too many?) securityconferences, it has become di?cult to keep up with the ?eld. After having talked to many colleagues, far too many to list all of them here, we decided to try a di?erent kind of workshop: one where people would attend to discuss open research topics in our ?eld, as typically only happens during the co?ee breaks of ordinary conferences. Toenablethiswecalledforabstractsof2pageswheretheauthorsoutlinethe open problems that they would like to discuss at the workshop, the intent being that the author would be given 15 minutes to present the topic and another 15 minutes for discussion. These abstracts were then read by all members of the Program Committee and ranked by them according to whether they thought thiswouldleadtoaninterestingtalk and discussion. We then simply selected the abstracts that got the best rankings. We were happy to see this result in many really interesting talks and disc- sions in the courseof the workshop.Ofcourse, these lively anddirect discussions are almost impossible to achieve in a printed text. Still, we asked the authors to distill the essence of these discussions into full papers. The results are in your hand
This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. The author discusses quantum algorithms for solving the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP) and for attacking IFP, DLP and ECDLP based cryptographic systems. Chapters also cover various other quantum algorithms for Pell's equation, principal ideal, unit group, class group, Gauss sums, prime counting function, Riemann's hypothesis and the BSD conjecture. Quantum Computational Number Theory is self-contained and intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the related fields. Number theorists, cryptographers and professionals working in quantum computing, cryptography and network security will find this book a valuable asset.
This book addresses the issue of Machine Learning (ML) attacks on Integrated Circuits through Physical Unclonable Functions (PUFs). It provides the mathematical proofs of the vulnerability of various PUF families, including Arbiter, XOR Arbiter, ring-oscillator, and bistable ring PUFs, to ML attacks. To achieve this goal, it develops a generic framework for the assessment of these PUFs based on two main approaches. First, with regard to the inherent physical characteristics, it establishes fit-for-purpose mathematical representations of the PUFs mentioned above, which adequately reflect the physical behavior of these primitives. To this end, notions and formalizations that are already familiar to the ML theory world are reintroduced in order to give a better understanding of why, how, and to what extent ML attacks against PUFs can be feasible in practice. Second, the book explores polynomial time ML algorithms, which can learn the PUFs under the appropriate representation. More importantly, in contrast to previous ML approaches, the framework presented here ensures not only the accuracy of the model mimicking the behavior of the PUF, but also the delivery of such a model. Besides off-the-shelf ML algorithms, the book applies a set of algorithms hailing from the field of property testing, which can help to evaluate the security of PUFs. They serve as a "toolbox", from which PUF designers and manufacturers can choose the indicators most relevant for their requirements. Last but not least, on the basis of learning theory concepts, the book explicitly states that the PUF families cannot be considered as an ultimate solution to the problem of insecure ICs. As such, it provides essential insights into both academic research on and the design and manufacturing of PUFs.
Unique selling point: * Industry standard book for merchants, banks, and consulting firms looking to learn more about PCI DSS compliance. Core audience: * Retailers (both physical and electronic), firms who handle credit or debit cards (such as merchant banks and processors), and firms who deliver PCI DSS products and services. Place in the market: * Currently there are no PCI DSS 4.0 books
Invariant, or coordinate-free methods provide a natural framework for many geometric questions. Invariant Methods in Discrete and Computational Geometry provides a basic introduction to several aspects of invariant theory, including the supersymmetric algebra, the Grassmann-Cayler algebra, and Chow forms. It also presents a number of current research papers on invariant theory and its applications to problems in geometry, such as automated theorem proving and computer vision. Audience: Researchers studying mathematics, computers and robotics.
Foreword by Dieter Jungnickel The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background. This text is suitable for courses in commutative algebra, finite commutative algebra, and coding theory. It is also suitable as a supplementary text for courses in discrete mathematics, finite fields, finite rings, etc.
|
![]() ![]() You may like...
Advances in Production Management…
Bojan Lalic, Vidosav Majstorovic, …
Hardcover
R3,029
Discovery Miles 30 290
Analysis, Cryptography And Information…
Panos M. Pardalos, Nicholas J. Daras, …
Hardcover
R2,551
Discovery Miles 25 510
|