![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
Biomedical Image Synthesis and Simulation: Methods and Applications presents the basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging. The first part of the book introduces and describes the simulation and synthesis methods that were developed and successfully used within the last twenty years, from parametric to deep generative models. The second part gives examples of successful applications of these methods. Both parts together form a book that gives the reader insight into the technical background of image synthesis and how it is used, in the particular disciplines of medical and biomedical imaging. The book ends with several perspectives on the best practices to adopt when validating image synthesis approaches, the crucial role that uncertainty quantification plays in medical image synthesis, and research directions that should be worth exploring in the future.
Handbook of Pediatric Brain Imaging: Methods and Applications presents state-of-the-art research on pediatric brain image acquisition and analysis from a broad range of imaging modalities, including MRI, EEG and MEG. With rapidly developing methods and applications of MRI, this book strongly emphasizes pediatric brain MRI, elaborating on the sub-categories of structure MRI, diffusion MRI, functional MRI, perfusion MRI and other MRI methods. It integrates a pediatric brain imaging perspective into imaging acquisition and analysis methods, covering head motion, small brain sizes, small cerebral blood flow of neonates, dynamic cortical gyrification, white matter tract growth, and much more.
Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5-10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students.
Computer-Aided Oral and Maxillofacial Surgery: Developments, Applications, and Future Perspectives is an ideal resource for biomedical engineers and computer scientists, clinicians and clinical researchers looking for an understanding on the latest technologies applied to oral and maxillofacial surgery. In facial surgery, computer-aided decisions supplement all kind of treatment stages, from a diagnosis to follow-up examinations. This book gives an in-depth overview of state-of-the-art technologies, such as deep learning, augmented reality, virtual reality and intraoperative navigation, as applied to oral and maxillofacial surgery. It covers applications of facial surgery that are at the interface between medicine and computer science. Examples include the automatic segmentation and registration of anatomical and pathological structures, like tumors in the facial area, intraoperative navigation in facial surgery and its recent developments and challenges for treatments like zygomatic implant placement.
The artificial intelligence subset machine learning has become a popular technique in professional fields as many are finding new ways to apply this trending technology into their everyday practices. Two fields that have majorly benefited from this are pattern recognition and information security. The ability of these intelligent algorithms to learn complex patterns from data and attain new performance techniques has created a wide variety of uses and applications within the data security industry. There is a need for research on the specific uses machine learning methods have within these fields, along with future perspectives. Machine Learning Techniques for Pattern Recognition and Information Security is a collection of innovative research on the current impact of machine learning methods within data security as well as its various applications and newfound challenges. While highlighting topics including anomaly detection systems, biometrics, and intrusion management, this book is ideally designed for industrial experts, researchers, IT professionals, network developers, policymakers, computer scientists, educators, and students seeking current research on implementing machine learning tactics to enhance the performance of information security.
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.
Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs.
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention.
Infrastructure Computer Vision delves into this field of computer science that works on enabling computers to see, identify, process images and provide appropriate output in the same way that human vision does. However, implementing these advanced information and sensing technologies is difficult for many engineers. This book provides civil engineers with the technical detail of this advanced technology and how to apply it to their individual projects.
Feature Extraction for Image Processing and Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in MATLAB and Python. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the link between theory and exemplar code of the algorithms." Essential background theory is carefully explained. This text gives students and researchers in image processing and computer vision a complete introduction to classic and state-of-the art methods in feature extraction together with practical guidance on their implementation.
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing.
Example-Based Super Resolution provides a thorough introduction and overview of example-based super resolution, covering the most successful algorithmic approaches and theories behind them with implementation insights. It also describes current challenges and explores future trends. Readers of this book will be able to understand the latest natural image patch statistical models and the performance limits of example-based super resolution algorithms, select the best state-of-the-art algorithmic alternative and tune it for specific use cases, and quickly put into practice implementations of the latest and most successful example-based super-resolution methods.
A multicore platform uses distributed or parallel computing in a single computer, and this can be used to assist image processing algorithms in reducing computational complexities. By implementing this novel approach, the performance of imaging, video, and vision algorithms would improve, leading the way for cost-effective devices like intelligent surveillance cameras. Multi-Core Computer Vision and Image Processing for Intelligent Applications is an essential publication outlining the future research opportunities and emerging technologies in the field of image processing, and the ways multi-core processing can further the field. This publication is ideal for policy makers, researchers, technology developers, and students of IT.
Learning-Based Local Visual Representation and Indexing, reviews the state-of-the-art in visual content representation and indexing, introduces cutting-edge techniques in learning based visual representation, and discusses emerging topics in visual local representation, and introduces the most recent advances in content-based visual search techniques. |
You may like...
Gaze Interaction and Applications of Eye…
Paivi Majaranta, Hirotaka Aoki, …
Hardcover
R6,163
Discovery Miles 61 630
Challenges and Applications for Hand…
Lalit Kane, Bhupesh Kumar Dewangan, …
Hardcover
R5,333
Discovery Miles 53 330
Handbook of Research on Advanced…
Siddhartha Bhattacharyya, Pinaki Banerjee, …
Hardcover
R7,041
Discovery Miles 70 410
Pattern Recognition and Classification…
Eva Volna, Martin Kotyrba, …
Hardcover
R4,634
Discovery Miles 46 340
Imaging and Sensing for Unmanned…
Vania V. Estrela, Jude Hemanth, …
Hardcover
|