![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Energy conversion & storage
Solid chemisorption technology is an effective form of energy conversion for recovering low-grade thermal energy, but limited thermal conductivity and agglomeration phenomena greatly limit its performance. Over the past 20 years, researchers have explored the use of thermal conductive porous matrix to improve heat and mass transfer performance. Their efforts have yielded composite sorption technology, which is now extensively being used in refrigeration, heat pumps, energy storage, and de-NOx applications. This book reviews the latest technological advances regarding composite solid sorbents. Various development methods are introduced and compared, kinetic models are presented, and different cycles are analyzed. Given its scope, the book will benefit experts involved in developing novel materials and cycles for energy conversion, as well as engineers working to develop effective commercialized energy conversion systems based on solid sorption technology
This book examines a broad range of advances in hydrogen energy and alternative fuel developments and their role in the energy transition. The respective contributions were presented at the International Symposium on Sustainable Hydrogen, held in Algiers, Algeria on November 27-28, 2019. The transition from non-renewable polluting energy to sustainable green energy requires not only new energy sources but also new storage techniques and smart energy management. This situation has sparked renewed interest in hydrogen and alternative fuels, as they could help meet these needs. Indeed, hydrogen can not only be used as a clean energy vector or as an alternative fuel, but also as a storage medium or as an intermediary that enables improved energy management. This text offers a valuable reference guide for those working in the professional energy sector, as well as for students and instructors in academia who want to learn about the state of the art and future directions in the fields of hydrogen energy, alternative fuels and sustainable energy development.
Nuclear isomers are the long-lived excited states of nuclei. Therefore, they constitute the meta-stable landscape of nuclei. The first isomer was probably identified as early as 1921. Since then, the number of isomers has been growing steadily picking up pace in recent times. Interest in nuclear isomers has grown in recent years for many reasons. The experimental capabilities to observe isomers have been expanding to cover a wider time scale. This has opened up new windows to observe and decipher the underlying nuclear structure and interactions. Further, the isomers are beginning to be seen as potential energy storage devices and nuclear clocks with a host of applications. Possible discovery of a gamma ray laser has also ignited many researches in this area. Isomers now cover the full nuclear landscape with structural peculiarities specific to each region of the nuclear chart. Exploring the nuclear isomers, therefore, provides a novel insight into the nuclear structure properties of that region. There could be many different reasons for the long lives of excited nuclear states, which lead to the classification of isomers. Isomers are broadly classified in to four classes: Spin isomers, shape isomers, fission isomers and K-isomers. Seniority isomers have also been identified which are often clubbed with the spin isomers. We discuss this classification and the underlying causes in detail. Many examples are considered to highlight the large variety of isomers. The range of half-lives covered by the isomers varies from billions of years to nano-seconds and even small. To understand this vast variation is a fascinating endeavor in itself. The angular momentum couplings, nuclear shapes, pairing etc. conspire together to give this vast range of half-lives. We go through these aspects in detail, highlighting the various selection rules at work. It is interesting that the nuclear shapes play an important role in many types of isomers. The spin isomers, which occur in spherical or, near-spherical nuclei, are generally confined to the magic numbers. Seniority isomers are largely found in semi-magic nuclei and should be explored in conjunction with the spin isomers. New developments in seniority and generalized seniority isomers are discussed in detail. As the nuclei deform; the nature of isomers changes. We take a close look into the decay properties of isomers in deformed nuclei, particularly the K isomers, the shape isomers and the fission isomers. While doing so, the theoretical and experimental developments of isomers are also addressed. A number of open questions are posed for possible new experiments and better understanding of the isomers.
The 7th installment of the REWAS conference series held at the TMS Annual Meeting& Exhibition focuses on developing tomorrow's technical cycles. The papers in thiscollection explore the latest technical and societal developments enabling sustainabilitywithin our global economy with an emphasis on recycling and waste management. The2022 collection includes contributions from the following symposia: * Coupling Metallurgy and Sustainability: An EPD Symposium in Honor of Diran Apelian* Recovering the Unrecoverable* Sustainable Production and Development Perspectives* Automation and Digitalization for Advanced Manufacturing* Decarbonizing the Materials Industry
This book explores the scientific basis of the photovoltaic effect, solar cell operation, various types of solar cells, and the main process used in their manufacture. It addresses a range of topics, including the production of solar silicon; silicon-based solar cells and modules; the choice of semiconductor materials and their production-relevant costs and performance; device structures, processing, and manufacturing options for the three major thin-film PV technologies; high-performance approaches for multi-junction, concentrator, and space applications; and new types of organic polymer and dye-sensitized solar cells. The book also presents a concept for overcoming the efficiency limit of today's solar cells. Accessible for beginners, while also providing detailed information on the physics and technology for experts, the book is a valuable resource for researchers, engineers, and graduate students in fields such as physics, materials, energy, electrical and electronic engineering and microelectronics.
This book presents fundamental theories, design and testing methodologies, and engineering applications concerning spacecraft thermal control systems, helping readers gain a comprehensive understanding of spacecraft thermal control systems and technologies. With abundant design methods, advanced technologies and typical applications to help them grasp the basic concepts and principles of engineering applications, it is mainly intended for engineering and technical staff engaged in spacecraft thermal control areas. The book discusses the thermal environments commonly used for space flight missions, rules and regulations for system design, thermal analysis and simulation, and thermal testing methods, as well as the design and validation of the thermal control systems for Chinese spacecraft, such as the Shenzhou spacecraft and Chang'e Lunar Lander and Rover. It also introduces them to communication and remote sensing satellites and presents advanced thermal control technologies developed in recent years, including heat transfer, heat insulation, heating, refrigeration and thermal sensor technologies. Addressing the design and validation of thermal control systems for various types of Chinese spacecraft, the book offers a valuable theoretical and practical reference guide for researchers and engineers alike.
In this book, the development of next-generation batteries is introduced. Included are reports of investigations to realize high energy density batteries: Li-air, Li-sulfur, and all solid-state and metal anode (Mg, Al, Zn) batteries. Sulfide and oxide solid electrolytes are also reviewed.A number of relevant aspects of all solid-state batteries with a carbon anode or Li-metal anode are discussed and described: The formation of the cathode; the interface between the cathode (anode) and electrolyte; the discharge and charge mechanisms of the Li-air battery; the electrolyte system for the Li-air battery; and cell construction. The Li-sulfur battery involves a critical problem, namely, the dissolution of intermediates of sulfur during the discharge process. Here, new electrolyte systems for the suppression of intermediate dissolution are discussed. Li-metal batteries with liquid electrolytes also present a significant problem: the dendrite formation of lithium. New separators and electrolytes are introduced to improve the safety and rechargeability of the Li-metal anode. Mg, Al, and Zn metal anodes have been also applied to rechargeable batteries, and in this book, new metal anode batteries are introduced as the generation-after-next batteries.This volume is a summary of ALCA-SPRING projects, which constitute the most extensive research for next-generation batteries in Japan. The work presented in this book is highly informative and useful not only for battery researchers but also for researchers in the fields of electric vehicles and energy storage.
The "Encyclopedia of Electrochemical Power Sources" is a truly
interdisciplinary reference for those working with batteries, fuel
cells, electrolyzers, supercapacitors, and photo-electrochemical
cells. With a focus on the environmental and economic impact of
electrochemical power sources, this five-volume work consolidates
coverage of the field and serves as an entry point to the
literature for professionals and students alike.
This book provides a brief research source for optical fiber sensors for energy production and storage systems, discussing fundamental aspects as well as cutting-edge trends in sensing. This volume provides industry professionals, researchers and students with the most updated review on technologies and current trends, thus helping them identify technology gaps, develop new materials and novel designs that lead to commercially viable energy storage systems.
This book covers the selection of nanocomposite supercapacitor materials. It describes the most important criteria behind the selection of materials for the electrode, electrolytes, separator and current collectors, which comprise the key components of supercapacitors for advanced energy storage. It discusses the influence on each material on the unique electrochemical properties of nanocomposite supercapacitors with respect to their energy storage mechanism and stability under extreme and unpredictable conditions. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.
Ammonia Fuel Cells covers all aspects of ammonia fuel cell technologies and their applications, including their theoretical analysis, modeling studies and experimental investigations. The book analyzes the role of integrated ammonia fuel cell systems within various renewable energy resources and existing energy systems.
In this book, the authors cover the recent progress in the synthesis, characterization and application of various multi-layered carbides, carbonitrides and nitrides. Moreover, the processing and development of MXene-based composites are elaborated, focusing on their applications and performances as transparent conductors in environmental remediation and energy storage systems.
This book evaluates a number of serious technical challenges related to the integration of renewable energy sources into the power grid using the DIgSILENT PowerFactory power system simulation software package. It provides a fresh perspective on analyzing power systems according to renewable energy sources and how they affect power system performance in various situations. The book examines load flow, short-circuit, RMS simulation, power quality, and system reliability in the presence of renewable energy sources, and presents readers with the tools needed for modeling, simulation, and analysis for network planning. The book is a valuable resource for researchers, engineers, and students working to solve power system problems in the presence of renewable energy sources in power system operations and utilities.
This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries
This book provides a comprehensive review of functional nanomaterials for electrochemical applications, presenting interesting examples of nanomaterials with different dimensions and their applications in electrochemical energy storage. It also discusses the synthesis of functional nanomaterials, including quantum dots; one-dimensional, two-dimensional and three-dimensional nanostructures; and advanced nanocomposites. Highlighting recent advances in current electrochemical energy storage hotpots: lithium batteries, lithium-ion batteries, sodium-ion batteries, other metal-ion batteries, halogen ion batteries, and metal-gas batteries, this book will appeal to readers in the various fields of chemistry, material science and engineering.
This revised and updated 3rd edition of the book allows readers to develop a practical understanding of the major aspects of energy. It also includes two new chapters addressing renewable energy, and energy management and economics. The book begins by introducing basic definitions, and then moves on to discuss the primary and secondary energy types, internal energy and enthalpy, and energy balance, heat of reaction and heat transfer. Each chapter features fully solved example problems and practice problems to support learning and the application of the topics discussed, including: energy production and conversion; energy conservation; energy storage; energy coupling; sustainability in energy systems; renewable energy; and energy management and economics. Written for students across a range of engineering and science disciplines, the book provides a comprehensive study guide. It is particularly suitable for courses in energy technology, sustainable energy technologies and energy conversion & management, and offers an ideal reference text for students, engineers, energy researchers and industry professionals. A updated solutions manual to this textbook's problems ais available to course instructors on request from the author and online on www.springer.com.
This book presents and facilitates new research and development results with hot topics in the thermoelectric generators (TEGs) field. Topics include: novel thin film; multilayer, composite and nanostructured thermoelectric materials; simulation of phenomena related to thermoelectricity; thermoelectric thin film and multilayer materials manufacturing technologies; measurement techniques for characterization; thermoelectric generators; and the simulation, modeling, design, thermal, and mechanical degradation problems. This book helps researchers tackle the challenges that still remain in creating cheap and effective TEGs and presents the latest trends and technologies in development and production of advanced thermoelectric generation devices.
Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects introduces the fundamental principles of intermediate solid oxide fuel cells technology. It provides the reader with a broad understanding and practical knowledge of the electrodes, pyrochlore/perovskite/oxide electrolytes and interconnects which form the backbone of the Solid Oxide Fuel Cell (SOFC) unit. Opening with an introduction to the thermodynamics, physiochemical and electrochemical behavior of Solid Oxide Fuel Cells (SOFC), the book also discusses specific materials, including low temperature brownmillerites and aurivillius electrolytes, as well as pyrochlore interconnects. This book analyzes the basic concepts, providing cutting-edge information for both researchers and students. It is a complete reference for Intermediate Solid Oxide Fuel Cells technology that will be a vital resource for those working in materials science, fuel cells and solid state chemistry.
This book is a concise introductory guide to understanding the foundations of electrochemistry. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the author explains in simple language an otherwise complex subject that can be difficult to master for most. It provides readers with an understanding of important electrochemical processes and practical industrial applications, such as electrolysis processes, metal electrowinning, corrosion and analytical applications, and galvanic cells such as batteries, fuel cells, and supercapacitors. This powerful tutorial is a great resource for students, engineers, technicians, and other busy professionals who need to quickly acquire a solid understanding of the science of electrochemistry.
This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic-inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.
Biomass to Energy Conversion Technologies: The Road to Commercialization examines biomass production, biomass types, properties and characterization, and energy conversion technologies with an emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to produce electricity. The book discusses the integration of both fermentation and anaerobic digestion in a biorefinery concept that allows the production of ethanol-along with biogas-to be used to produce heat and electricity, thus improving overall energy balance. Included case studies based on worldwide projects discuss both risks and challenges. The main studies on the combination of both bioethanol and biogas production processes are reviewed and the strength and weakness of the integrated treatment for industrial application are highlighted. The book also considers gasification technologies and their potential for biomass gasification and lists the advantages and disadvantages of using of biomass as a source of energy, the path of commercialization of the various processes, energy related environmental issues.
Simulation of Power System with Renewables provides details on the modelling and efficient implementation of MATLAB, particularly with a renewable energy driven power system. The book presents a step-by-step approach to modelling implementation, including all major components used in current power systems operation, giving the reader the opportunity to learn how to gather models for conventional generators, wind farms, solar plants and FACTS control devices. Users will find this to be a central resource for modelling, building and simulating renewable power systems, including discussions on its limitations, assumptions on the model, and the implementation and analysis of the system.
This book introduces the fundamental concepts of thermal cloaking based on transformation theory and bilayer theory, under the conduction and convection heat transfer modes. It focuses on thermal cloaking with detailed explanations of the underlying theoretical bases leading to the primary thermal cloaking results in open literature, from an engineering perspective, and with practical application in mind. Also, the authors strive to present the materials with an emphasis on the related physical phenomena and interpretation, to the extent possible. Through this book, engineering students can grasp the fundamental ideas of thermal cloaking and the associated mathematics, thus being better able to initiate their own research and explore new ideas in thermal cloaking. While not intended to be a general reference in the vast field of thermal cloaking research, this book is a unique monograph addressing the theoretical and analytical aspects of thermal cloaking within the scope mentioned above. This book also contains many independent analytical solutions to thermal cloaking problems that are not available in open literature. It is suitable for a three-credit graduate or advanced undergraduate course in engineering science.
Low-Temperature Energy Systems with Applications of Renewable Energy investigates a wide variety of low-temperature energy applications in residential, commercial, institutional, and industrial areas. It addresses the basic principles that form the groundwork for more efficient energy conversion processes and includes detailed practical methods for carrying out these critical processes. This work considers new directions in the engineering use of technical thermodynamics and energy, including more in-depth studies of the use of renewable sources, and includes worked numerical examples, review questions, and practice problems to allow readers to test their own comprehension of the material. With detailed explanations, methods, models, and algorithms, Low-Temperature Energy Systems with Applications of Renewable Energy is a valuable reference for engineers and scientists in the field of renewable energy, as well as energy researchers and academics.
|
You may like...
Energy Materials - Fundamentals to…
Sanjay J. Dhoble, N. Thejo Kalyani, …
Paperback
R4,483
Discovery Miles 44 830
Graphene-based Nanotechnologies for…
Mohammad Jawaid, Akil Ahmad, …
Paperback
R4,017
Discovery Miles 40 170
Machinery and Energy Systems for the…
Klaus Brun, Timothy C. Allison
Paperback
R3,947
Discovery Miles 39 470
Advances in Electronic Materials for…
Aftab Aslam Parwaz Khan, Mohammed Nazim, …
Paperback
R5,797
Discovery Miles 57 970
Exergy - Energy, Environment and…
Ibrahim Dincer, Marc A. Rosen
Hardcover
R3,359
Discovery Miles 33 590
|