![]() |
![]() |
Your cart is empty |
||
Books > Mind, Body & Spirit > Unexplained phenomena / the paranormal > Extraterrestrial beings
This book explains how it came to be that Venus and Earth, while very similar in chemical composition, zonation, size and heliocentric distance from the Sun, are very different in surface environmental conditions. It is argued here that these differences can be accounted for by planetoid capture processes and the subsequent evolution of the planet-satellite system. Venus captured a one-half moon-mass planetoid early in its history in the retrograde direction and underwent its "fatal attraction scenario" with its satellite (Adonis). Earth, on the other hand, captured a moon-mass planetoid (Luna) early in its history in prograde orbit and underwent a benign estrangement scenario with its captured satellite.
This book explores humanity's thoughts and ideas about extraterrestrial life, paying close attention to the ways science and culture interact with one another to create a context of imagination and discovery related to life on other worlds. Despite the recent explosion in our knowledge of other planets and the seeming era of discovery in which we live, to date we have found no concrete evidence that we are not alone. Our thinking about life on other worlds has been and remains the product of a combination of scientific investigation and human imagination shaped by cultural values--particularly values of exploration and discovery connected to American society. The rapid growth in our awareness of other worlds makes this a crucial moment to think about and assess the influence of cultural values on the scientific search for extraterrestrial life. Here the author considers the junction of science and culture with a focus on two main themes: (1) the underlying assumptions, many of which are tacitly based upon cultural values common in American society, that have shaped the ways researchers in astrobiology and SETI have conceptualized the nature of their endeavor and represented ideas about the potential influence contact might have on human civilization, and (2) the empirical evidence we can access as a way of thinking about the social impact that contact with alien intelligence might have for humanity.
This review gathers astronomers, geologists, biologists, and chemists around a common question: how did life emerge on Earth? The ultimate goal is to probe an even more demanding question: is life universal? This not-so linear account highlights problems, gaps, and controversies. Discussion covers the formation of the solar system; the building of a habitable planet; prebiotic chemistry, biochemistry, and the emergence of life; the early Earth environment, and much more.
In The Earth as a Distant Planet, the authors become external observers of our solar system from a distance and try to determine how one can understand how Earth, the third in distance to the central star, is essentially unique and capable of sustaining life. The knowledge gained from this original perspective is then applied to the search for other planets outside the solar system, or exoplanets. Since the discovery in 1992 of the first exoplanet, the number of planet detections has increased exponentially and ambitious missions are already being planned for the future. The exploration of Earth and the rest of the rocky planets are Rosetta stones in classifying and understanding the multiplicity of planetary systems that exist in our galaxy. In time, statistics on the formation and evolution of exoplanets will be available and will provide vital information for solving some of the unanswered questions about the formation, as well as evolution of our own world and solar system. Special attention is paid to the biosignatures (signs of life) detectable in the Earth's reflected spectra and the search for life in the universe. The authors are experts on the subject of extrasolar planets. They provide an introductory but also very much up-to-date text, making this book suitable for researchers and for advanced students in astronomy and astrophysics.
This book collects three outstanding examples of the work of Mexican biologist Alfonso Luis Herrera (1868-1943), a pioneer in experimental origins of life research. Two of the collected works appear here in English for the first time. Herrera's works represent the attempt to deal experimentally with the issue of an autotrophic origin of life, a possibility that was widely accepted prior to Alexander I. Oparin's ideas regarding the possibility of organic synthesis and the origin of life in an early Earth environment. An active promoter of Darwinian ideas in Latin America, Herrera was also among the first 20th century researchers to attempt to "create life in a test tube." This collection shows the remarkable prescience of researchers in Mexico with regards to laboratory approaches to the problem of the origin of life. It also includes a modern commentary by researchers actively engaged in research in prebiotic evolution and the origins of life, and deeply concerned with the historical development of ideas in these fields. The list includes H. James Cleaves, Antonio Lazcano, Alicia Negron-Gonzalez and Juli Pereto, who discuss in detail the relevance of Herrera's ideas to modern theory and their historical context. The book will expose modern readers and researchers to currents of thinking that have been lost, largely to time and language inaccessibility, of a seminal early theoretical biologist.
The Mars Science Laboratory is the latest and most advanced NASA roving vehicle to explore the surface of Mars. The Curiosity rover has landed in Gale crater and will explore this region assessing conditions on the surface that might be hospitable to life and paving the way for later even more sophisticated exploration of the surface. This book describes the mission, its exploration and scientific objectives, studies leading to the design of the mission and the instruments that accomplish the objectives of the mission. This book is aimed at all those engaged in Martian studies as well as those interested in the origin of life in other environments. It will be a valuable reference for anyone who uses data from the Mars Science Laboratory. Previously published in Space Science Reviews journal, Vol. 170/1-4, 2012.
Sir Isaac Newton famously said, regarding his discoveries, "If I have seen further it is by standing upon the shoulders of giants." The Evolving Universe and the Origin of Life describes, complete with fascinating biographical details of the thinkers involved, the ascent to the metaphorical shoulders accomplished by the greatest minds in history. For the first time, a single book can take the reader on a journey through the history of the universe as interpreted by the expanding body of knowledge of humankind. From subatomic particles to the protein chains that form life, and expanding in scale to the entire universe, this book covers the science that explains how we came to be. The Evolving Universe and the Origin of Life contains a great breadth of knowledge, from astronomy to physics, from chemistry to biology. It includes over 350 figures that enhance the comprehension of concepts both basic and advanced, and is a non-technical, easy-to-read text at an introductory college level that is ideal for anyone interested in science as well as its history.
This book extends the discussion of the nature of freedom and what it means for a human to be free. This question has occupied the minds of thinkers since the Enlightenment. However, without exception, every one of these discussions has focused on the character of liberty on Earth. In this volume the authors explore how people are likely to be governed in space and how that will affect what sort of liberty they experience. Who will control oxygen? How will people maximise freedom of movement in a lethal environment? What sort of political and economic systems can be created in places that will be inherently isolated? These are just a few of the major questions that bear on the topic of extra-terrestrial liberty. During the last forty years an increasing number of nations have developed the capability of launching people into space. The USA, Europe, Russia, China and soon India have human space exploration programs. These developments raise the fundamental question of how are humans to be governed in space. This book follows from a previous volume published in this series which looked at the Meaning of Liberty Beyond the Earth and explored what sort of freedoms could exist in space in a very general way. This new volume focuses on systems of governance and how they will influence which of these sorts of freedoms will become dominant in extra-terrestrial society. The book targets a wide readership covers many groups including: Space policy makers interested in understanding how societies will develop in space and what the policy implications might be for space organisations. Space engineers interested in understanding how social developments in space might influence the way in which infrastructure and space settlements should be designed. Space scientists interested in how scientific developments might influence the social structures of settlements beyond the Earth. Social scientists (political philosophers, ethicists etc) interested in understanding how societies will develop in the future.
Is the Earth the right model and the only universal key to understand habitability, the origin and maintenance of life? Are we able to detect life elsewhere in the universe by the existing techniques and by the upcoming space missions? This book tries to give answers by focusing on environmental properties, which are playing a major role in influencing planetary surfaces or the interior of planets and satellites. The book gives insights into the nature of planets or satellites and their potential to harbor life. Different scientific disciplines are searching for the clues to classify planetary bodies as a habitable object and what kind of instruments and what kind of space exploration missions are necessary to detect life. Results from model calculations, field studies and from laboratory studies in planetary simulation facilities will help to elucidate if some of the planets and satellites in our solar system as well as in extra-solar systems are potentially habitable for life.
Early History of the Recognition of Molecular Biochirality, by Joseph Gal, Pedro Cintas Synthesis and Chirality of Amino Acids Under Interstellar Conditions, by Chaitanya Giri, Fred Goesmann, Cornelia Meinert, Amanda C. Evans, Uwe J. Meierhenrich Chemical and Physical Models for the Emergence of Biological Homochirality, by son E. Hein, Dragos Gherase, Donna G. Blackmond Biomolecules at Interfaces: Chiral, Naturally, by Arantzazu Gonzalez-Campo and David B. Amabilino Stochastic Mirror Symmetry Breaking: Theoretical Models and Simulation of Experiments, by Celia Blanco, David Hochberg Self-Assembly of Dendritic Dipeptides as a Model of Chiral Selection in Primitive Biological Systems, by Brad M. Rosen, Cecile Roche, Virgil Percec Chirality and Protein Biosynthesis, by Sindrila Dutta Banik, Nilashis Nandi
This book addresses important current and historical topics in astrobiology and the search for life beyond Earth, including the search for extraterrestrial intelligence (SETI). The first section covers the plurality of worlds debate from antiquity through the nineteenth century, while section two covers the extraterrestrial life debate from the twentieth century to the present. The final section examines the societal impact of discovering life beyond Earth, including both cultural and religious dimensions. Throughout the book, authors draw links between their own chapters and those of other contributors, emphasizing the interconnections between the various strands of the history and societal impact of the search for extraterrestrial life. The chapters are all written by internationally recognized experts and are carefully edited by Douglas Vakoch, professor of clinical psychology at the California Institute of Integral Studies and Director of Interstellar Message Composition at the SETI Institute. This interdisciplinary book will benefit everybody trying to understand the meaning of astrobiology and SETI for our human society.
A murmur is heard from the depths of time. Life and Earth are engaged in a dialog that has lasted for four billion years. Sometimes it's a whisper, sometimes a roar. One part sometimes gets the upper hand, dominates the discussion and sets the agenda. But mostly the two have some kind of mutual understanding, and the murmur goes on. Most of us don't listen. Nora does. She listens, and she tries to understand. Nora Noffke has focused her scientific career on the interaction between the living and the non-living. This is no mean task in an academic world where you are usually either this or that, such as either a biologist or a geologist. The amount of stuff you need to grasp is so large that it usually feels better to sit comfortably on one chair, rather than to risk falling between them. Geobiology is not for the faint of heart. Nora's focus is on that all-important biological substance mucus, or EPS (ext- cellular polymeric substance). EPS is the oil in the machinery, the freeway to travel for many small animals and protists, the coat of armour for others, the mortar in the brick wall for yet others. For microbes such as cyanobacteria it may be the world they built, the world they live, eat, fight, multiply, and die in.
Currently under construction in Northern Chile, the Atacama Large Millimeter Array (ALMA) is the most ambitious astronomy facility under construction. This book describes the enormous capabilities of ALMA, the state of the project, and most notably the scientific prospects of such a unique facility. The book includes reviews and recent results on most hot topics of modern astronomy. It looks forward to the revolutionary results that are likely to be obtained with ALMA.
When did life first appear on Earth and what form did it take? The answer to this intriguing and fundamentally important question lies somewhere within the early Archean rock record. The young Earth was, however, a very different place to that we know today and numerous pitfalls await our interpretation of these most ancient rocks. The first half of this practical guide equips the reader with the background knowledge to successfully evaluate new potentially biological finds from the Archean rock record. Successive steps are covered, from locating promising samples in the field, through standard petrography and evaluation of antiquity and biogenicity criteria, to the latest state of the art geochemical techniques. The second half of the guide uniquely brings together all the materials that have been claimed to comprise the earliest fossil record into an easily accessible, fully illustrated format. This will be a handbook that every Archean geologist, palaeobiologist and astrobiologist will wish to have in their backpack or on their lab-bench.
From Fossils to Astrobiology reviews developments in paleontology and geobiology that relate to the rapidly-developing field of Astrobiology, the study of life in the Universe. Many traditional areas of scientific study, including astronomy, chemistry and planetary science, contribute to Astrobiology, but the study of the record of life on planet Earth is critical in guiding investigations in the rest of the cosmos. In this varied book, expert scientists from 15 countries present peer-reviewed, stimulating reviews of paleontological and astrobiological studies. The overviews of established and emerging techniques for studying modern and ancient microorganisms on Earth and beyond, will be valuable guides to evaluating biosignatures which could be found in the extraterrestrial surface or subsurface within the Solar System and beyond. This volume also provides discussion on the controversial reports of "nanobacteria" in the Martian meteorite ALH84001. It is a unique volume among Astrobiology monographs in focusing on fossil evidence from the geological record and will be valuable to students and researchers alike.
In the twenty-first century, the debate about life on other worlds is quickly changing from the realm of speculation to the domain of hard science. Within a few years, as a consequence of the rapid discovery by astronomers of planets around other stars, astronomers very likely will have discovered clear evidence of life beyond the Earth. Such a discovery of extraterrestrial life will change everything. Knowing the answer as to whether humanity has company in the universe will trigger one of the greatest intellectual revolutions in history, not the least of which will be a challenge for at least some terrestrial religions. Which religions will handle the discovery of extraterrestrial life with ease and which will struggle to assimilate this new knowledge about our place in the universe? Some religions as currently practiced appear to only be viable on Earth. Other religions could be practiced on distant worlds but nevertheless identify both Earth as a place and humankind as a species of singular spiritual religious importance, while some religions could be practiced equally well anywhere in the universe by any sentient beings. Weintraub guides readers on an invigorating tour of the world s most widely practiced religions. It reveals what, if anything, each religion has to say about the possibility that extraterrestrial life exists and how, or if, a particular religion would work on other planets in distant parts of the universe."
One of the most ambitious works of paranormal investigation of our
time, here is an unprecedented compendium of pre-twentieth-century
UFO accounts, written with rigor and color by two of today's
leading investigators of unexplained phenomena.
It has been nearly 100 years since the Apollo moon landings, when Jack and Vladimir, two astronauts on a mission to Venus, discover a mysterious void related to indigenous life on the planet. Subsequently more voids are detected on Earth, Mars, Titan, and, quite ominously, inside a planetoid emerging from the Kuiper belt. Jack is sent to investigate the voids in the Solar System and intercept the planetoid - which, as becomes increasingly clear, is inhabited by alien life forms. Jack and his crew will have little time to understand their alien biochemistry, abilities, behavior patterns, resilience, and technology, but also how these life forms relate to the voids. Humankind's first encounter with these exotic life forms couldn't be more fateful, becoming a race against time to save life on Earth and to reveal the true nature of the voids, which seem to be intrinsically related to life and the universe itself. In this novel, the author combines many topics related to state-of-the-art research in the field of astrobiology with fictional elements to produce a thrilling page turner. This new version significantly develops the astrobiological denouement of the plot and features an extensive non-technical appendix where the underlying science is presented and discussed. From the reviews of the first edition ("Voids of Eternity: Alien Encounter") Here's a thrilling yarn in the best "hard SF" tradition of Asimov, James Hogan, and Ben Bova, written by a scientist who knows all about the possibilities of life in the solar system and beyond. Dirk Schulze-Makuch weaves into his book all the astrobiological themes he's worked on in recent years -- speculation about creatures in the atmosphere of Venus and on and under the surface of Mars and Titan -- together with some well-informed Eastern philosophy and a cracking good space battle. A great first novel from a rising talent. Highly recommended. David Darling, on amazon.com, 2009The research interests of Dr. Schulze-Makuch, currently a professor at Washington State University, focus on evolutionary adaptation strategies of organisms in their natural environment, particularly extreme environments such as found on other planetary bodies. Dirk Schulze-Makuch is best known for his publications on extraterrestrial life, being coauthor of three books on the topic: "We Are Not Alone: Why We Have Already Found Extraterrestrial Life" (2010), "Cosmic Biology: How Life could Evolve on Other Worlds" (2010), and "Life in the Universe: Expectations and Constraints" (2004). In 2011 he published with Paul Davies "A One Way Mission to Mars: Colonizing the Red Planet" and in 2012 with David Darling "Megacatastrophes Nine Strange Ways the World Could End."
Both the high level of activity in worldwide space exploration programmes and the discovery of extra-solar planets have spurred renewed interest in the physics and evolution dynamics of solar systems. The present book has grown out of a set of lectures by leading experts in the field within the framework of the well-known EADN summer schools. It addresses primarily graduate students and young researchers but will be equally useful for scientists in search of a comprehensive tutorial account that goes beyond the material found in standard textbooks.
Recent space missions to the outer solar system, Galileo (1996-2003) and Cassini-Huygens (2004-today), together with ground observations, have revealed that the moons of the outer solar system are enigmatic objects, introducing extraordinary challenges for geologists, astrobiologists, organic chemists, and planetologists. Chemical exchange exists through the different layers that form their interiors, and also from the interior to the surface. The most convincing evidence is certainly the discovery of water vapour and ice particles emerging from Enceladus's active south polar region. Evidence for exchange with a subsurface liquid ocean has also been provided by the inference of hydrated salts on the surfaces of Jupiter's moons, Europa and Ganymede, as well as the detection of sodium salts in particles originating in Enceladus's plumes. Aqueous exchange with the rocky core may also be possible, considering that 40Ar has been observed in the plumes of Enceladus during one flyby of Cassini and in the atmosphere of Titan. The ongoing CH4 replenishment in Titan's atmosphere is additional striking evidence of exchange processes within the moons.
This book is a collection of essays written by the very scientists and engineers who have led, and continue to lead, the scientific quest known as SETI, the search for extraterrestrial intelligence. Divided into three parts, the first section, 'The Spirit of SETI Past', written by the surviving pioneers of this then emerging discipline, reviews the major projects undertaken during the first 50 years of SETI science and the results of that research. In the second section, 'The Spirit of SETI Present', the present-day science and technology is discussed in detail, providing the technical background to contemporary SETI instruments, experiments, and analytical techniques, including the processing of the received signals to extract potential alien communications. In the third and final section, 'The Spirit of SETI Future', the book looks ahead to the possible directions that SETI will take in the next 50 years, addressing such important topics as interstellar message construction, the risks and assumptions of interstellar communications, when we might make contact, what aliens might look like and what is likely to happen in the aftermath of such a contact.
In 1988, in an article on the analysis of the measurements of the variations in the radial velocities of a number of stars, Campbell, Walker, and Yang reported an - teresting phenomenon;the radial velocity variations of Cephei seemed to suggest the existence of a Jupiter-like planet around this star. This was a very exciting and, at the same time, very surprising discovery. It was exciting because if true, it would have marked the detection of the ?rst planet outside of our solar system. It was surprising because the planet-hosting star is the primary of a binary system with a separation less than 19 AU, a distance comparable to the planetary distances in our solar system. The moderatelyclose orbit of the stellar companionof Cephei raised questions about the reality of its planet. The skepticism over the interpretation of the results (which was primarily based on the idea that binary star systems with small sepa- tions would not be favorable places for planet formation) became so strong that in a subsequent paper in 1992, Walker and his colleagues suggested that the planet in the Cephei binary might not be real, and the variations in the radial velocity of this star might have been due to its chromospheric activities.
"Dr. Ardy Sixkiller Clarke has for more than 20 years done a
tremendous amount of field work and has carefully and with
spiritual sensitivity collected these stories from the original
witnesses. This book is an impressive documentation of the scope
and depth of the UFO enigma."
For many thousands of years, human beings have been asking themselves whether they are more frightened of being alone in the universe or of the thought that there is someone else out there. Over the past few decades, however, we have moved from imagination to action, exploring the cosmos using new techniques, often with surprising results. Numerous fascinating but little known facts have emerged - for example, that every year many rocks from Mars fall on the Earth, that one of our amino acids has been found in the coma of a comet, and that some of the known thousands of extrasolar planets are similar to our own. There are further exciting and important discoveries around the corner that will cast more light on the great enigma of how life started on Earth. In this intriguing book, one of the World's leading researchers in astrophysics and space science examines fundamental questions concerning life on Earth and the rest of the cosmos in an accessible and stimulating way.
Where were the amino acids, the molecules of life, created: perhaps in a lightning storm in the early Earth, or perhaps elsewhere in the cosmos? This book argues that at least some of them must have been produced in the cosmos, and that the fact that the Earthly amino acids have a specific handedness provides an important clue for that explanation. This book discusses several models that purport to explain the handedness, ultimately proposing a new explanation that involves cosmic processing of the amino acids produced in space. This book provides a tour for laypersons that includes a definition of life, the Big Bang, stellar nucleosynthesis, the electromagnetic spectrum, molecules, and supernovae and the particles they produce. |
![]() ![]() You may like...
Eerie Florida - Chilling Tales from the…
Mark Muncy, Kari Schultz
Paperback
The Emerald Doorway - Three Mystic…
R Scott Lemriel (Aka - Rochek)
Hardcover
R682
Discovery Miles 6 820
|