![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere
This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms. This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.
Following a description of the various sources and factors influencing the contents of heavy metal pollution in post-catastrophic and agricultural soils, subsequent chapters examine soil enzymes and eggs as bio-monitors, lead adsorption, the effects of arsenic on microbial diversity, and the effects of Mediterranean grasslands on abandoned mines. A third section focuses on the adaptation strategies used by plants and bacteria, such as Pinus sylvestris in industrial areas, and the rhizosphere in contaminated tropical soils and soil treated with sewage sludge. Further topics addressed include strategies of bioremediation, e.g. using transgenic plants as tools for soil remediation. This new volume on heavy metals in soil will be of interest to researchers and scholars in microbial and plant biotechnology, agriculture, the environmental sciences and soil ecology.
Presently in Yellowstone there are almost 200 active research permits that involve over 500 investigators, but only a small fraction of this scientific work is reported in the popular press. Furthermore, the results are mixed and frequently confusing to the general public. The intent of this book is to explain both the general issues associated with the region and how science is done to understand those issues, from wolf and grizzly bear research to thermal activity. It further describes how science informs policy in the Greater Yellowstone Region, how scientists from an array of disciplines do their work, and finally, how the nature of that work enables or limits future plans for managing the park and surrounding lands.
Earthworms, which belong to the order Oligochaeta, comprise roughly 3,000 species grouped into five families. Earthworms have been called 'ecosystem engineers'; much like human engineers, they change the structure of their environments. Earthworms are very versatile and are found in nearly all terrestrial ecosystems. They play an important role in forest and agricultural ecosystems. This Soil Biology volume describes the various facets of earthworms, such as their role in soil improvement, soil structure, and the biocontrol of soil-borne plant fungal diseases. Reviews discuss earthworms' innate immune system, molecular markers to address various issues of earthworm ecology, earthworm population dynamics, and the influences of organic farming systems and tillage. Further topics include the characteristics of vermicompost, relationships between soil earthworms and enzymes, the role of spermathecae, copulatory behavior, and adjustment of the donated sperm volume.
An important prerequisite to the long-term use of nuclear energy is information on uranium ore deposits from which uranium can be economically exploited. Hence the basic purpose of this book is to present an overview of uranium geology, data characteristic for uranium deposits, and a synthesis of these data in the form of a typological classification of uranium deposits supported by more detailed descriptions of selected uranium districts and deposits. An additional goal is to provide access for the interested reader to the voluminous literature on uranium geology. Therefore a register of bibliography as global as possible, extending beyond the immediate need for this book, is provided. The volume presented here was not originally designed as a product for its own sake. It evolved as a by-product during decades of active uranium exploration and was compiled thanks to a request by the Springer Publishing Company. Routine research work on identifying characteristic features and recognition criteria of uranium deposits, combined with associated modeling of types of deposits for reapplication in exploration, provided the data bank. The publisher originally asked for a book on uranium deposits structured as a combined text- and reference book. The efforts to condense all the text into a single publication were soon doomed. The material grew out of all feasible proportions for a book of acceptable size and price, a wealth of data on uranium geology and related geosciences having become available during the past decade, too vast for one volume.
This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.
Even before the present Administrator of NASA, Daniel Goldin, made the phrase 'better, faster, cheaper' the slogan of at least the Office of Space Science, that same office under the Associate Administrator of Lennard Fisk and its Division of Solar System Exploration under the direction of Wes Huntress had begun a series of planetary spacecraft whose developmental cost, phase CID in the parlance of the trade, was to be held to under $150M. In order to get the program underway rapidly they chose two missions without the open solicitation now the hallmark of the program. One of these two missions, JPL' s Mars Pathfinder, was to be a technology demonstration mission with little immediate science return that would enable later high priority science missions to Mars. Many of the science investigations that were included had significant foreign contributions to keep NASA's cost of the mission within the Discovery budget. The second of these missions and the first to be launched was the Near Earth Asteroid Rendezvous mission, or NEAR, awarded to Johns Hopkins University's Applied Physics Laboratory. This mission was quite different than Mars Pathfinder, being taken from the list of high priority objectives of the science community and emphasizing the science return and not the technology development of the mission. This mission was also to prove to be well under the $150M phase CID cap.
In Underland, Robert Macfarlane delivers an epic exploration of the Earth's underworlds as they exist in myth, literature, memory, and the land itself. Traveling through the dizzying expanse of geologic time-from prehistoric art in Norwegian sea caves, to the blue depths of the Greenland ice cap, to a deep-sunk "hiding place" where nuclear waste will be stored for 100,000 years to come-Underland takes us on an extraordinary journey into our relationship with darkness, burial, and what lies beneath the surface of both place and mind. Global in its geography and written with great lyricism, Underland speaks powerfully to our present moment. At once ancient and urgent, this is a book that will change the way you see the world.
by K. Lambeck, R. Sabadini and E. B08Chi Viscosity is one of the important material properties of the Earth, controlling tectonic and dynamic processes such as mantle convection, isostasy, and glacial rebound. Yet it remains a poorly resolved parameter and basic questions such as whether the planet's response to loading is linear or non-linear, or what are its depth and lateral variations remain uncertain. Part of the answer to such questions lies in laboratory observations of the rheology of terrestrial materials. But the extrapolation of such measurements from the laboratory environment to the geological environment is a hazardous and vexing undertaking, for neither the time scales nor the strain rates characterizing the geological processes can be reproduced in the laboratory. General rules for this extrapolation are that if deformation is observed in the laboratory at a particular temperature, deformation in geological environments will occur at a much reduced temperature, and that if at laboratory strain rates a particular deformation mechanism dominates over all others, the relative importance of possible mechanisms may be quite different at the geologically encountered strain rates. Hence experimental results are little more than guidelines as to how the Earth may respond to forces on long time scales.
While there are several excellent books dealing with numerical analysis and analytical theory, students and faculty in numerical applications to ocean dynamics have to sift through hundreds of references. This monograph is an attempt to partly rectify this situation. Major chapters (II, III and IV) deal first with the basics and then go on to various applications. Instead of covering the vast field of ocean dynamics, this book focuses on transport equations (diffusion and advection), shallow water phenomena - tides, storm surges and tsunamis; three-dimensional time dependent oceanic motion; natural oscillations; and steady state phenomena. The aim of this book is two-fold; it gives an introduction to the application of finite-difference methods to ocean dynamics, and it also reviews more complex methods.
This multifaceted study explores new directions for plate tectonic research, especially as a guide for future geodynamic modelling of the earth. In particular, it equips readers with a plate-tectonic toolbox (with derivations and ANSI-C code) for applications and reconstruction analysis, including new continuous calculation methods. It shows how to apply these tools to Late Mesozoic and Cenozoic kinematics, with a focus on hotspot reference frames, and for empirical analysis of continental stress histories, including fractured hydrocarbon reservoirs. Supported by solid arguments and data, the book integrates theoretical developments of expanded plate kinematic theory and an ensemble of critical observations into a grand model, with the new concept of mesoplates playing a key role. Written by an accomplished tectonics researcher and software developer, this graduate- and research-level monograph will interest academics as well as applied geoscientists, e.g. petroleum geologists.
Technologies for soil remediation require real knowledge and understanding of the processes involved and a correct and complete numerical approach in order to reach the best results at the lowest possible cost. The authors focus on the improvement of the scientific base for the development of integrated indicators of the environmental risks created by the presence of pollutants in water and porous media. They deliver insights into the understanding of integrated process, and also modeling capabilities. The establishment of a set of integrated indicators to evaluate the pollution status and risk of water resources will considerably aid environmental agencies, administrators and regulators and profit the society as a whole.
Man s intensifying use of the Earth s habitat has led to an urgent need for scientifically advanced geo-prediction systems that accurately locate subsurface resources and forecast the timing and magnitude of earthquakes, volcanic eruptions and land subsidence. As advances in the earth sciences lead to process-oriented ways of modeling the complex processes in the solid Earth, the papers in this volume provide a survey of some recent developments at the leading edge of this highly technical discipline. The chapters cover current research in predicting the future behavior of geologic systems as well as the mapping of geologic patterns that exist now in the subsurface as frozen evidence of the past. Both techniques are highly relevant to humanity s need for resources such as water, and will also help us control environmental degradation. The book also discusses advances made in seismological methods to obtain information on the 3D structure of the mantle and the lithosphere, and in the quantitative understanding of lithospheric scale processes. It covers recent breakthroughs in 3D seismic imaging that have enhanced the spatial resolution of these structural processes, and the move towards 4D imaging that measures these processes over time. The new frontier in modern Earth sciences described in this book has major implications for oceanographic and atmospheric sciences and our understanding of climate variability. It brings readers right up to date with the research in this vital field."
Reservoirs generally consist of sandstones or carbonates exhibiting heterogeneities caused by a wide range of factors. Some of these formed depositionally (e.g. as channels, palaeosols, clay seams or salts), others may be diagenetic in origin (e.g. carbonate or silica cemented zones, authigenic clays, karstic surfaces). The severity with which diagenesis affects rock systems results from the interplay between the diagenetic process itself and the timescale over which it operated. The book provides a wide-ranging overview of diagenetic processes and responses in calcareous, argillaceous, arenaceous and carbon-rich (microbial and organic) sedimentary systems. It introduces diagenetic concepts, reviews existing knowledge, and shows how existing qualitative approaches might be developed in more quantitative ways. Several chapters consider mass balance calculations and the temporal and spatial aspects of diagenetic processes. It is unique, as a textbook, in providing such a breadth of diagenetic subject range and such depth of coverage in each topic. It provides a source reference for advanced students and professionals active in reservoir and aquifer studies.
This book is an engineering guide for design of slopes and stabilisation works in rocks and residual soils. It is tailored to the practising geotechnical engineer and engineering geologist. Engineering and engineering geology students will find it quite useful and a practical course guide. It can be used as textbook in courses on landslides and slope stabilisation. The book's purpose is to present a concise documentation on how to design slopes and how to select a slope stabilisation method. The authors were selected among those who have lots of experience in their field.
About 20 years ago the emphasis in soil chemistry research switched from studies of problems related to scarcities of plant nutrients to those arising from soil pollutants. The new problems have come about because of the excessive uses of fertilizers, the inputs from farm and industrial wastes, the widespread applications of anthropogenie xenobiotic chemicals, and the deterioration of soil structure resulting from certain modern agriculture practises. The International Society of Soil Science (ISSS) recognized these problems and challenges. A provisional Working Group was set up in 1978 to focus attention on soil colloids with a view to understanding better the interactions wh ich take place at their surfaces. It was recognized that these interactions are fundamental to problems of soil fertility, as weIl as to those of soil pollution. After the group had received the official support of ISSS at its 12th International Congress in New Delhi in 1982 it set as its priority the assembling and evaluation of information, relevant to the soil and environmental sciences, concerning the composition and structure of soil colloids. Prior to that aseries of Position Papers were published in the Bulletin of the International Society of Soil Science (Vol. 61, 1981) outlining the state of knowledge about the composition and properties of soil colloids.
This book contains the results and findings of the advanced research carried out in a pilot area with a thorough investigation of the structure and functioning of an aquifer in a granitic formation. It characterizes the hard rock aquifer system and examines its properties and behavior as well as systematically details the geophysical, geological and remote sensing applications to conceptualize such an aquifer system. Coverage also includes a brief description of various experiences of globally studying the hard rock aquifers to provide a much wider experience.
This book sheds valuable new light on the genetic mineralogy of lower-mantle diamonds and syngenetic minerals. It presents groundbreaking experimental results revealing the melting relations of ultrabasic and basic associations and a physicochemical peritectic mechanism of their evolution. The experimental investigations included here reveal the key multicomponent, multiphase oxide-silicate-carbonate-carbon parental media for lower-mantle diamonds and syngenetic minerals. Consequently, readers will find extensive information on the diamond-parental oxide-silicate-carbonate-carbon melts-solutions that supplement the general features of lower-mantle diamond genesis and the most efficient ultrabasic-basic evolution. The experimental results on physicochemical aspects, combined with analytical mineralogy data, make it possible to create a generalized composition diagram of the diamond-parental melts-solutions, there by completing the mantle-carbonatite concept for the genesis of lower-mantle diamonds and syngenetic minerals. This book addresses the needs of all researchers studying the Earth's deepest structure, super-deep mineral formation including diamonds, and magmatic evolution.
The book presents isotope-geochemical investigations of the world's largest reserves of copper, nickel, and platinum-group elements in the Norilsk ore region. Ever since its discovery, generations of geologists have been fascinated by the geology of these deposits, described as a 250 Ma magmatic formation with mafic and ultramafic layered intrusions, disseminated ore and continuous copper-nickel ore bed. The book includes the results of more than 5,000 analyses of eleven isotopic systems, performed at the Russian Research Geological Institute's Center of Isotopic Research between 2005 and 2014. The book is intended for specialists in isotope geology, metallogeny, ore geology and students of geology.
The first edition of this book demystified the process of well log analysis for students, researchers and practitioners. In the two decades since, the industry has changed enormously: technical staffs are smaller, and hydrocarbons are harder to locate, quantify, and produce. New drilling techniques have engendered new measurement devices incorporated into the drilling string. Corporate restructuring and the "graying" of the workforce have caused a scarcity in technical competence involved in the search and exploitation of petroleum. The updated 2nd Edition reviews logging measurement technology developed in the last twenty years, and expands the petrophysical applications of the measurements.
Glaciers provide an unparalleled tool for studying global environmental change. This book is the first of its kind concentrating on the paleoenvironmental record archived in mid- and low-latitude glaciers. By concentrating mainly on the last 500 years of these records, we can now see that laws enacted to protect our environment in Europe and North America are providing positive results. Documenting global mid- and low-latitude paleoenvironmental records in glaciers, this volume forms a timely and essential complement to the wealth of literature on polar and Greenland ice sheet records.
Soil carbon sequestration can play a strategic role in controlling the increase of CO2 in the atmosphere and thereby help mitigate climatic change. There are scientific opportunities to increase the capacity of soils to store carbon and remove it from circulation for longer periods of time. The vast areas of degraded and desertified lands throughout the world offer great potential for the sequestration of very large quantities of carbon. If credits are to be bought and sold for carbon storage, quick and inexpensive instruments and methods will be needed to monitor and verify that carbon is actually being added and maintained in soils. Large-scale soil carbon sequestration projects pose economic and social problems that need to be explored. This book focuses on scientific and implementation issues that need to be addressed in order to advance the discipline of carbon sequestration from theory to reality. The main issues discussed in the book are broad and cover aspects of basic science, monitoring, and implementation. The opportunity to restore productivity of degraded lands through carbon sequestration is examined in detail. This book will be of special interest to professionals in agronomy, soil science, and climatology.
This book presents recent lessons learned in the context of research and development for various dryland ecosystems, focusing on water resources management, land and vegetation cover degradation and remediation, and socioeconomic aspects, as well as integrated approaches to ensuring water and land security in view of the current and predicted climate change. As water and land are the essential bases of food production, the management of these natural resources is becoming a cornerstone for the development of dryland populations. The book gathers the peer-reviewed, revised versions of the most outstanding papers on these topics presented at the ILDAC2015 Conference in Djerba, Tunisia. |
![]() ![]() You may like...
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,669
Discovery Miles 16 690
Earth's Oldest Rocks
Martin J. Van Kranendonk, Vickie Bennett, …
Paperback
|