0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (10)
  • R250 - R500 (25)
  • R500+ (1,432)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Statistical Field Theory for Neural Networks (Paperback, 1st ed. 2020): Moritz Helias, David Dahmen Statistical Field Theory for Neural Networks (Paperback, 1st ed. 2020)
Moritz Helias, David Dahmen
R1,837 Discovery Miles 18 370 Ships in 9 - 17 working days

This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.

Regression Modeling - Methods, Theory, and Computation with SAS (Hardcover): Michael Panik Regression Modeling - Methods, Theory, and Computation with SAS (Hardcover)
Michael Panik
R4,566 Discovery Miles 45 660 Ships in 12 - 19 working days

Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.

The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression, L1 and q-quantile regression, regression in a spatial domain, ridge regression, semiparametric regression, nonlinear least squares, and time-series regression issues. For most of the regression methods, the author includes SAS procedure code, enabling readers to promptly perform their own regression runs.

A Comprehensive, Accessible Source on Regression Methodology and Modeling
Requiring only basic knowledge of statistics and calculus, this book discusses how to use regression analysis for decision making and problem solving. It shows readers the power and diversity of regression techniques without overwhelming them with calculations.

Presenting Your Data with SPSS Explained (Hardcover): Perry R. Hinton, Isabella McMurray Presenting Your Data with SPSS Explained (Hardcover)
Perry R. Hinton, Isabella McMurray
R5,098 Discovery Miles 50 980 Ships in 12 - 19 working days

Data Presentation with SPSS Explained provides students with all the information they need to conduct small scale analysis of research projects using SPSS and present their results appropriately in their reports. Quantitative data can be collected in the form of a questionnaire, survey or experimental study. This book focuses on presenting this data clearly, in the form of tables and graphs, along with creating basic summary statistics. Data Presentation with SPSS Explained uses an example survey that is clearly explained step-by-step throughout the book. This allows readers to follow the procedures, and easily apply each step in the process to their own research and findings. No prior knowledge of statistics or SPSS is assumed, and everything in the book is carefully explained in a helpful and user-friendly way using worked examples. This book is the perfect companion for students from a range of disciplines including psychology, business, communication, education, health, humanities, marketing and nursing - many of whom are unaware that this extremely helpful program is available at their institution for their use.

R Markdown - The Definitive Guide (Paperback): Yihui Xie, Garrett Grolemund, J.J. Allaire R Markdown - The Definitive Guide (Paperback)
Yihui Xie, Garrett Grolemund, J.J. Allaire
R1,159 Discovery Miles 11 590 Ships in 9 - 17 working days

R Markdown: The Definitive Guide is the first official book authored by the core R Markdown developers that provides a comprehensive and accurate reference to the R Markdown ecosystem. With R Markdown, you can easily create reproducible data analysis reports, presentations, dashboards, interactive applications, books, dissertations, websites, and journal articles, while enjoying the simplicity of Markdown and the great power of R and other languages. In this book, you will learn Basics: Syntax of Markdown and R code chunks, how to generate figures and tables, and how to use other computing languages Built-in output formats of R Markdown: PDF/HTML/Word/RTF/Markdown documents and ioslides/Slidy/Beamer/PowerPoint presentations Extensions and applications: Dashboards, Tufte handouts, xaringan/reveal.js presentations, websites, books, journal articles, and interactive tutorials Advanced topics: Parameterized reports, HTML widgets, document templates, custom output formats, and Shiny documents. Yihui Xie is a software engineer at RStudio. He has authored and co-authored several R packages, including knitr, rmarkdown, bookdown, blogdown, shiny, xaringan, and animation. He has published three other books, Dynamic Documents with R and knitr, bookdown: Authoring Books and Technical Documents with R Markdown, and blogdown: Creating Websites with R Markdown. J.J. Allaire is the founder of RStudio and the creator of the RStudio IDE. He is an author of several packages in the R Markdown ecosystem including rmarkdown, flexdashboard, learnr, and radix. Garrett Grolemund is the co-author of R for Data Science and author of Hands-On Programming with R. He wrote the lubridate R package and works for RStudio as an advocate who trains engineers to do data science with R and the Tidyverse.

A First Course in Statistical Programming with R (Paperback, 3rd Revised edition): W. John Braun, Duncan J. Murdoch A First Course in Statistical Programming with R (Paperback, 3rd Revised edition)
W. John Braun, Duncan J. Murdoch
R1,235 Discovery Miles 12 350 Ships in 12 - 19 working days

This third edition of Braun and Murdoch's bestselling textbook now includes discussion of the use and design principles of the tidyverse packages in R, including expanded coverage of ggplot2, and R Markdown. The expanded simulation chapter introduces the Box-Muller and Metropolis-Hastings algorithms. New examples and exercises have been added throughout. This is the only introduction you'll need to start programming in R, the computing standard for analyzing data. This book comes with real R code that teaches the standards of the language. Unlike other introductory books on the R system, this book emphasizes portable programming skills that apply to most computing languages and techniques used to develop more complex projects. Solutions, datasets, and any errata are available from www.statprogr.science. Worked examples - from real applications - hundreds of exercises, and downloadable code, datasets, and solutions make a complete package for anyone working in or learning practical data science.

Numerical and Analytical Methods with MATLAB for Electrical Engineers (Hardcover, New): William B. Ober, Andrew Stevens Numerical and Analytical Methods with MATLAB for Electrical Engineers (Hardcover, New)
William B. Ober, Andrew Stevens
R4,502 Discovery Miles 45 020 Ships in 12 - 19 working days

Combining academic and practical approaches to this important topic, Numerical and Analytical Methods with MATLAB(r) for Electrical Engineers is the ideal resource for electrical and computer engineering students. Based on a previous edition that was geared toward mechanical engineering students, this book expands many of the concepts presented in that book and replaces the original projects with new ones intended specifically for electrical engineering students.

This book includes:

  • An introduction to the MATLAB programming environment
  • Mathematical techniques for matrix algebra, root finding, integration, and differential equations
  • More advanced topics, including transform methods, signal processing, curve fitting, and optimization
  • An introduction to the MATLAB graphical design environment, Simulink

Exploring the numerical methods that electrical engineers use for design analysis and testing, this book comprises standalone chapters outlining a course that also introduces students to computational methods and programming skills, using MATLAB as the programming environment. Helping engineering students to develop a feel for structural programming-not just button-pushing with a software program-the illustrative examples and extensive assignments in this resource enable them to develop the necessary skills and then apply them to practical electrical engineering problems and cases.

An Introduction to SAGE Programming - With Applications to SAGE Interacts for Numerical Methods (Hardcover): R Mezei An Introduction to SAGE Programming - With Applications to SAGE Interacts for Numerical Methods (Hardcover)
R Mezei
R1,927 Discovery Miles 19 270 Ships in 12 - 19 working days

Features a simplified presentation of numerical methods by introducing and implementing SAGE programs An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods emphasizes how to implement numerical methods using SAGE Math and SAGE Interacts and also addresses the fundamentals of computer programming, including if statements, loops, functions, and interacts. The book also provides a unique introduction to SAGE and its computer algebra system capabilities; discusses second and higher order equations and estimate limits; and determines derivatives, integrals, and summations. Providing critical resources for developing successful interactive SAGE numerical computations, the book is accessible without delving into the mathematical rigor of numerical methods. The author illustrates the benefits of utilizing the SAGE language for calculus and the numerical analysis of various methods such as bisection methods, numerical integration, Taylor s expansions, and Newton s iterations. Providing an introduction to the terminology and concepts involved, An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods also features: * An introduction to computer programming using SAGE * Many practical examples throughout to illustrate the application of SAGE Interacts for various numerical methods * Discussions on how to use SAGE Interacts and SAGE Cloud in order to create mathematical demonstrations * Numerous homework problems and exercises that allow readers to practice their programming skillset * A companion website that includes related SAGE programming code and select solutions to the homework problems and exercises An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods is an ideal reference for applied mathematicians who need to employ SAGE for the study of numerical methods and analysis. The book is also an appropriate supplemental textbook for upper-undergraduate and graduate-level courses in numerical methods.

Quantile Regression for Cross-Sectional and Time Series Data - Applications in Energy Markets Using R (Paperback, 1st ed.... Quantile Regression for Cross-Sectional and Time Series Data - Applications in Energy Markets Using R (Paperback, 1st ed. 2020)
Jorge M. Uribe, Montserrat Guillen
R1,573 Discovery Miles 15 730 Ships in 9 - 17 working days

This brief addresses the estimation of quantile regression models from a practical perspective, which will support researchers who need to use conditional quantile regression to measure economic relationships among a set of variables. It will also benefit students using the methodology for the first time, and practitioners at private or public organizations who are interested in modeling different fragments of the conditional distribution of a given variable. The book pursues a practical approach with reference to energy markets, helping readers learn the main features of the technique more quickly. Emphasis is placed on the implementation details and the correct interpretation of the quantile regression coefficients rather than on the technicalities of the method, unlike the approach used in the majority of the literature. All applications are illustrated with R.

Introduction to Bioinformatics with R - A Practical Guide for Biologists (Paperback): Edward Curry Introduction to Bioinformatics with R - A Practical Guide for Biologists (Paperback)
Edward Curry
R1,866 Discovery Miles 18 660 Ships in 12 - 19 working days

In biological research, the amount of data available to researchers has increased so much over recent years, it is becoming increasingly difficult to understand the current state of the art without some experience and understanding of data analytics and bioinformatics. An Introduction to Bioinformatics with R: A Practical Guide for Biologists leads the reader through the basics of computational analysis of data encountered in modern biological research. With no previous experience with statistics or programming required, readers will develop the ability to plan suitable analyses of biological datasets, and to use the R programming environment to perform these analyses. This is achieved through a series of case studies using R to answer research questions using molecular biology datasets. Broadly applicable statistical methods are explained, including linear and rank-based correlation, distance metrics and hierarchical clustering, hypothesis testing using linear regression, proportional hazards regression for survival data, and principal component analysis. These methods are then applied as appropriate throughout the case studies, illustrating how they can be used to answer research questions. Key Features: * Provides a practical course in computational data analysis suitable for students or researchers with no previous exposure to computer programming. * Describes in detail the theoretical basis for statistical analysis techniques used throughout the textbook, from basic principles * Presents walk-throughs of data analysis tasks using R and example datasets. All R commands are presented and explained in order to enable the reader to carry out these tasks themselves. * Uses outputs from a large range of molecular biology platforms including DNA methylation and genotyping microarrays; RNA-seq, genome sequencing, ChIP-seq and bisulphite sequencing; and high-throughput phenotypic screens. * Gives worked-out examples geared towards problems encountered in cancer research, which can also be applied across many areas of molecular biology and medical research. This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. It is appropriate for use as a textbook or as a practical book for biological scientists looking to gain bioinformatics skills.

Clinical Data Quality Checks for CDISC Compliance Using SAS (Paperback): Sunil Gupta Clinical Data Quality Checks for CDISC Compliance Using SAS (Paperback)
Sunil Gupta
R1,421 Discovery Miles 14 210 Ships in 12 - 19 working days

Clinical Data Quality Checks for CDISC Compliance using SAS is the first book focused on identifying and correcting data quality and CDISC compliance issues with real-world innovative SAS programming techniques such as Proc SQL, metadata and macro programming. Learn to master Proc SQL's subqueries and summary functions for multi-tasking process. Drawing on his more than 25 years' experience in the pharmaceutical industry, the author provides a unique approach that empowers SAS programmers to take control of data quality and CDISC compliance. This book helps you create a system of SDTM and ADaM checks that can be tracked for continuous improvement. How often have you encountered issues such as missing required variables, duplicate records, invalid derived variables and invalid sequence of two dates? With the SAS programming techniques introduced in this book, you can start to monitor these and more complex data and CDISC compliance issues. With increased standardization in SDTM and ADaM specifications and data values, codelist dictionaries can be created for better organization, planning and maintenance. This book includes a SAS program to create excel files containing unique values from all SDTM and ADaM variables as columns. In addition, another SAS program compares SDTM and ADaM codelist dictionaries with codelists from define.xml specifications. Having tools to automate this process greatly saves time from doing it manually. Features SDTMs and ADaMs Vitals SDTMs and ADaMs Data CDISC Specifications Compliance CDISC Data Compliance Protocol Compliance Codelist Dictionary Compliance

Analyzing Qualitative Data with MAXQDA - Text, Audio, and Video (Hardcover, 1st ed. 2019): Udo Kuckartz, Stefan Radiker Analyzing Qualitative Data with MAXQDA - Text, Audio, and Video (Hardcover, 1st ed. 2019)
Udo Kuckartz, Stefan Radiker
R2,248 Discovery Miles 22 480 Ships in 9 - 17 working days

This book presents strategies for analyzing qualitative and mixed methods data with MAXQDA software, and provides guidance on implementing a variety of research methods and approaches, e.g. grounded theory, discourse analysis and qualitative content analysis, using the software. In addition, it explains specific topics, such as transcription, building a coding frame, visualization, analysis of videos, concept maps, group comparisons and the creation of literature reviews. The book is intended for masters and PhD students as well as researchers and practitioners dealing with qualitative data in various disciplines, including the educational and social sciences, psychology, public health, business or economics.

Modern Psychometrics with R (Paperback, 1st ed. 2018): Patrick Mair Modern Psychometrics with R (Paperback, 1st ed. 2018)
Patrick Mair
R1,858 Discovery Miles 18 580 Ships in 9 - 17 working days

This textbook describes the broadening methodology spectrum of psychological measurement in order to meet the statistical needs of a modern psychologist. The way statistics is used, and maybe even perceived, in psychology has drastically changed over the last few years; computationally as well as methodologically. R has taken the field of psychology by storm, to the point that it can now safely be considered the lingua franca for statistical data analysis in psychology. The goal of this book is to give the reader a starting point when analyzing data using a particular method, including advanced versions, and to hopefully motivate him or her to delve deeper into additional literature on the method. Beginning with one of the oldest psychometric model formulations, the true score model, Mair devotes the early chapters to exploring confirmatory factor analysis, modern test theory, and a sequence of multivariate exploratory method. Subsequent chapters present special techniques useful for modern psychological applications including correlation networks, sophisticated parametric clustering techniques, longitudinal measurements on a single participant, and functional magnetic resonance imaging (fMRI) data. In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results. Requiring a basic knowledge of statistical methods and R software, but written in a casual tone, this text is ideal for graduate students in psychology. Relevant courses include methods of scaling, latent variable modeling, psychometrics for graduate students in Psychology, and multivariate methods in the social sciences.

Mathematical Statistics with Applications in R (Paperback, 3rd edition): K. M Ramachandran, Chris P Tsokos Mathematical Statistics with Applications in R (Paperback, 3rd edition)
K. M Ramachandran, Chris P Tsokos
R2,991 Discovery Miles 29 910 Ships in 12 - 19 working days

Mathematical Statistics with Applications in R, Third Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods, such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem-solving in a logical manner. Step-by-step procedure to solve real problems make the topics very accessible.

Computer Intensive Methods in Statistics (Hardcover): Silvelyn  Zwanzig, Behrang Mahjani Computer Intensive Methods in Statistics (Hardcover)
Silvelyn Zwanzig, Behrang Mahjani
R4,959 Discovery Miles 49 590 Ships in 12 - 19 working days

Presents the main ideas of computer-intensive statistical methods Gives the algorithms for all the methods Uses various plots and illustrations for explaining the main ideas Features the theoretical backgrounds of the main methods. Includes R codes for the methods and examples

Phylogenetic Comparative Methods in R (Paperback): Liam J Revell, Luke J Harmon Phylogenetic Comparative Methods in R (Paperback)
Liam J Revell, Luke J Harmon
R1,466 R1,290 Discovery Miles 12 900 Save R176 (12%) Ships in 12 - 19 working days

An authoritative introduction to the latest comparative methods in evolutionary biology Phylogenetic comparative methods are a suite of statistical approaches that enable biologists to analyze and better understand the evolutionary tree of life, and shed vital new light on patterns of divergence and common ancestry among all species on Earth. This textbook shows how to carry out phylogenetic comparative analyses in the R statistical computing environment. Liam Revell and Luke Harmon provide an incisive conceptual overview of each method along with worked examples using real data and challenge problems that encourage students to learn by doing. By working through this book, students will gain a solid foundation in these methods and develop the skills they need to interpret patterns in the tree of life. Covers every major method of modern phylogenetic comparative analysis in R Explains the basics of R and discusses topics such as trait evolution, diversification, trait-dependent diversification, biogeography, and visualization Features a wealth of exercises and challenge problems Serves as an invaluable resource for students and researchers, with applications in ecology, evolution, anthropology, disease transmission, conservation biology, and a host of other areas Written by two of today's leading developers of phylogenetic comparative methods

Statistical Modeling With R - a dual frequentist and Bayesian approach for life scientists (Paperback): Pablo Inchausti Statistical Modeling With R - a dual frequentist and Bayesian approach for life scientists (Paperback)
Pablo Inchausti
R1,559 Discovery Miles 15 590 Ships in 9 - 17 working days

To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics. Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.

Basic Elements of Computational Statistics (Hardcover, 1st ed. 2017): Wolfgang Karl Hardle, Ostap Okhrin, Yarema Okhrin Basic Elements of Computational Statistics (Hardcover, 1st ed. 2017)
Wolfgang Karl Hardle, Ostap Okhrin, Yarema Okhrin
R2,778 R852 Discovery Miles 8 520 Save R1,926 (69%) Ships in 9 - 17 working days

This textbook on computational statistics presents tools and concepts of univariate and multivariate statistical data analysis with a strong focus on applications and implementations in the statistical software R. It covers mathematical, statistical as well as programming problems in computational statistics and contains a wide variety of practical examples. In addition to the numerous R sniplets presented in the text, all computer programs (quantlets) and data sets to the book are available on GitHub and referred to in the book. This enables the reader to fully reproduce as well as modify and adjust all examples to their needs. The book is intended for advanced undergraduate and first-year graduate students as well as for data analysts new to the job who would like a tour of the various statistical tools in a data analysis workshop. The experienced reader with a good knowledge of statistics and programming might skip some sections on univariate models and enjoy the various ma thematical roots of multivariate techniques. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.

MATLAB and Simulink Crash Course for Engineers (Hardcover, 1st ed. 2022): Eklas Hossain MATLAB and Simulink Crash Course for Engineers (Hardcover, 1st ed. 2022)
Eklas Hossain
R1,529 R1,404 Discovery Miles 14 040 Save R125 (8%) Ships in 9 - 17 working days

MATLAB and Simulink Crash Course for Engineers is a reader-friendly introductory guide to the features, functions, and applications of MATLAB and Simulink. The book provides readers with real-world examples, exercises, and applications, and offers highly illustrated, step-by-step demonstrations of techniques for the modelling and simulation of complex systems. MATLAB coverage includes vectors and matrices, programs and functions, complex numbers, visualization, solving equations, numerical methods, optimization problems, and graphical user interfaces. The Simulink coverage includes commonly used Simulink blocks, control system simulation, electrical circuit analysis, electric power systems, power electronics, and renewable energy technology. This powerful tutorial is a great resource for students, engineers, and other busy technical professionals who need to quickly acquire a solid understanding of MATLAB and Simulink.

Multiscale Forecasting Models (Hardcover, 1st ed. 2018): Lida Mercedes Barba Maggi Multiscale Forecasting Models (Hardcover, 1st ed. 2018)
Lida Mercedes Barba Maggi
R3,198 R2,625 Discovery Miles 26 250 Save R573 (18%) Ships in 12 - 19 working days

This book presents two new decomposition methods to decompose a time series in intrinsic components of low and high frequencies. The methods are based on Singular Value Decomposition (SVD) of a Hankel matrix (HSVD). The proposed decomposition is used to improve the accuracy of linear and nonlinear auto-regressive models. Linear Auto-regressive models (AR, ARMA and ARIMA) and Auto-regressive Neural Networks (ANNs) have been found insufficient because of the highly complicated nature of some time series. Hybrid models are a recent solution to deal with non-stationary processes which combine pre-processing techniques with conventional forecasters, some pre-processing techniques broadly implemented are Singular Spectrum Analysis (SSA) and Stationary Wavelet Transform (SWT). Although the flexibility of SSA and SWT allows their usage in a wide range of forecast problems, there is a lack of standard methods to select their parameters. The proposed decomposition HSVD and Multilevel SVD are described in detail through time series coming from the transport and fishery sectors. Further, for comparison purposes, it is evaluated the forecast accuracy reached by SSA and SWT, both jointly with AR-based models and ANNs.

Data Science with Julia (Paperback): Paul D. McNicholas, Peter Tait Data Science with Julia (Paperback)
Paul D. McNicholas, Peter Tait
R1,818 Discovery Miles 18 180 Ships in 12 - 19 working days

"This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Universite Cote d'Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Universite Cote d'Azur, Nice, France

Statistical Modelling in R (Hardcover): Murray Aitkin, Brian Francis, John Hinde, Ross Darnell Statistical Modelling in R (Hardcover)
Murray Aitkin, Brian Francis, John Hinde, Ross Darnell
R4,307 Discovery Miles 43 070 Ships in 12 - 19 working days

R is now the most widely used statistical package/language in university statistics departments and many research organisations. Its great advantages are that for many years it has been the leading-edge statistical package/language and that it can be freely downloaded from the R web site. Its cooperative development and open code also attracts many contributors meaning that the modelling and data analysis possibilities in R are much richer than in GLIM4, and so the R edition can be substantially more comprehensive than the GLIM4 edition. This text provides a comprehensive treatment of the theory of statistical modelling in R with an emphasis on applications to practical problems and an expanded discussion of statistical theory. A wide range of case studies is provided, using the normal, binomial, Poisson, multinomial, gamma, exponential and Weibull distributions, making this book ideal for graduates and research students in applied statistics and a wide range of quantitative disciplines.

Compositional Data Analysis in Practice (Paperback): Michael Greenacre Compositional Data Analysis in Practice (Paperback)
Michael Greenacre
R1,601 Discovery Miles 16 010 Ships in 12 - 19 working days

Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results and interpretation of this very special type of data. All aspects of compositional data analysis are considered: visualization, modelling, dimension-reduction, clustering and variable selection, with many examples in the fields of food science, archaeology, sociology and biochemistry, and a final chapter containing a complete case study using fatty acid compositions in ecology. The applicability of these methods extends to other fields such as linguistics, geochemistry, marketing, economics and finance. R Software The following repository contains data files and R scripts from the book https://github.com/michaelgreenacre/CODAinPractice. The R package easyCODA, which accompanies this book, is available on CRAN -- note that you should have version 0.25 or higher. The latest version of the package will always be available on R-Forge and can be installed from R with this instruction: install.packages("easyCODA", repos="http://R-Forge.R-project.org").

Advanced Sampling Methods (Hardcover, 1st ed. 2021): Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra Advanced Sampling Methods (Hardcover, 1st ed. 2021)
Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra
R2,221 Discovery Miles 22 210 Ships in 12 - 19 working days

This book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.

Sufficient Dimension Reduction - Methods and Applications with R (Hardcover): Bing Li Sufficient Dimension Reduction - Methods and Applications with R (Hardcover)
Bing Li
R2,891 Discovery Miles 28 910 Ships in 12 - 19 working days

Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field. Features Provides comprehensive coverage of this emerging research field. Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion. Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data. Includes a set of computer codes written in R that are easily implemented by the readers. Uses real data sets available online to illustrate the usage and power of the described methods. Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones. The author Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.

Environmental Systems Analysis with MATLAB (R) (Paperback): Stefano Marsili-Libelli Environmental Systems Analysis with MATLAB (R) (Paperback)
Stefano Marsili-Libelli
R2,623 Discovery Miles 26 230 Ships in 12 - 19 working days

Explore the inner workings of environmental processes using a mathematical approach. Environmental Systems Analysis with MATLAB (R) combines environmental science concepts and system theory with numerical techniques to provide a better understanding of how our environment works. The book focuses on building mathematical models of environmental systems, and using these models to analyze their behaviors. Designed with the environmental professional in mind, it offers a practical introduction to developing the skills required for managing environmental modeling and data handling. The book follows a logical sequence from the basic steps of model building and data analysis to implementing these concepts into working computer codes, and then on to assessing their results. It describes data processing (rarely considered in environmental analysis); outlines the tools needed to successfully analyze data and develop models, and moves on to real-world problems. The author illustrates in the first four chapters the methodological aspects of environmental systems analysis, and in subsequent chapters applies them to specific environmental concerns. The accompanying software bundle is freely downloadable from the book web site. It follows the chapters sequence and provides a hands-on experience, allowing the reader to reproduce the figures in the text and experiment by varying the problem setting. A basic MATLAB literacy is required to get the most out of the software. Ideal for coursework and self-study, this offering: Deals with the basic concepts of environmental modeling and identification, both from the mechanistic and the data-driven viewpoint Provides a unifying methodological approach to deal with specific aspects of environmental modeling: population dynamics, flow systems, and environmental microbiology Assesses the similarities and the differences of microbial processes in natural and man-made environments Analyzes several aquatic ecosystems' case studies Presents an application of an extended Streeter & Phelps (S&P) model Describes an ecological method to estimate the bioavailable nutrients in natural waters Considers a lagoon ecosystem from several viewpoints, including modeling and management, and more

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Blockchain Life - Making Sense of the…
Kary Oberbrunner, Lee Richter Hardcover R543 Discovery Miles 5 430
Learning SAS by Example - A Programmer's…
Ron Cody Hardcover R2,904 Discovery Miles 29 040
Bitcoin And Blockchain Basics for…
Nairobi Hardcover R977 R850 Discovery Miles 8 500
Methods and Innovations for Multimedia…
Shu-Ching Chen, Mei-Ling Shyu Hardcover R5,231 Discovery Miles 52 310
Machine Learning - The Ultimate Guide to…
Herbert Jones Hardcover R776 R692 Discovery Miles 6 920
Non Fungible Token (NFT) - Delve Into…
Vicky V Choudhary Hardcover R491 R458 Discovery Miles 4 580
Data Integrity and Quality
Santhosh Kumar Balan Hardcover R3,324 Discovery Miles 33 240
Research Anthology on Blockchain…
Information Reso Management Association Hardcover R10,615 Discovery Miles 106 150
Real-time Linked Dataspaces
Edward Curry Hardcover R1,620 Discovery Miles 16 200
Data Modeling Master Class Training…
Steve Hoberman Paperback R5,425 R4,425 Discovery Miles 44 250

 

Partners