0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (14)
  • R250 - R500 (32)
  • R500+ (1,436)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

IBM SPSS for Intermediate Statistics - Use and Interpretation, Fifth Edition (Paperback, 5th edition): Nancy L. Leech, Karen C... IBM SPSS for Intermediate Statistics - Use and Interpretation, Fifth Edition (Paperback, 5th edition)
Nancy L. Leech, Karen C Barrett, George A. Morgan
R1,834 Discovery Miles 18 340 Ships in 12 - 19 working days

Designed to help readers analyze and interpret research data using IBM SPSS, this user-friendly book shows readers how to choose the appropriate statistic based on the design; perform intermediate statistics, including multivariate statistics; interpret output; and write about the results. The book reviews research designs and how to assess the accuracy and reliability of data; how to determine whether data meet the assumptions of statistical tests; how to calculate and interpret effect sizes for intermediate statistics, including odds ratios for logistic and discriminant analyses; how to compute and interpret post-hoc power; and an overview of basic statistics for those who need a review. Unique chapters on multilevel linear modeling; multivariate analysis of variance (MANOVA); assessing reliability of data; multiple imputation; mediation, moderation, and canonical correlation; and factor analysis are provided. SPSS syntax with output is included for those who prefer this format.

The new edition features:

IBM SPSS version 22; although the book can be used with most older and newer versions

New discusiion of intraclass correlations (Ch. 3)

Expanded discussion of effect sizes that includes confidence intervals of effect sizes (ch.5)

New information on part and partial correlations and how they are interpreted and a new discussion on backward elimination, another useful multiple regression method (Ch. 6)

New chapter on how use a variable as a mediator or a moderator (ch. 7)

Revised chapter on multilevel and hierarchical linear modeling (ch. 12)

A new chapter (ch. 13) on multiple imputation that demonstrates how to deal with missing data

Updated web resources for instructors including PowerPoint slides, answers to interpretation questions, extra SPSS problems and for students, data sets, and chapter outlines and study guides. "

IBM SPSS for Intermediate Statistics, Fifth Edition "provides helpful teaching tools:

all of the key SPSS windows needed to perform the analyses

outputs with call-out boxes to highlight key points

interpretation sections and questions to help students better understand and interpret the output

extra problems with realistic data sets for practice using intermediate statistics

Appendices on how to get started with SPSS, write research questions, and basic statistics.

An ideal supplement for courses in either intermediate/advanced statistics or research methods taught in departments of psychology, education, and other social, behavioral, and health sciences. This book is also appreciated by researchers in these areas looking for a handy reference for SPSS"

SAS and R - Data Management, Statistical Analysis, and Graphics, Second Edition (Hardcover, 2nd edition): Ken Kleinman,... SAS and R - Data Management, Statistical Analysis, and Graphics, Second Edition (Hardcover, 2nd edition)
Ken Kleinman, Nicholas J. Horton
R2,815 Discovery Miles 28 150 Ships in 9 - 17 working days

An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent TasksThe first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second EditionThis edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two SystemsThrough the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book's website.

Introduction to Geometric Algebra Computing (Hardcover): Dietmar Hildenbrand Introduction to Geometric Algebra Computing (Hardcover)
Dietmar Hildenbrand
R2,669 Discovery Miles 26 690 Ships in 12 - 19 working days

From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.

Algorithms for Data Science (Hardcover, 1st ed. 2016): Brian Steele, John Chandler, Swarna Reddy Algorithms for Data Science (Hardcover, 1st ed. 2016)
Brian Steele, John Chandler, Swarna Reddy
R2,824 Discovery Miles 28 240 Ships in 9 - 17 working days

This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.

Regression Modeling - Methods, Theory, and Computation with SAS (Hardcover): Michael Panik Regression Modeling - Methods, Theory, and Computation with SAS (Hardcover)
Michael Panik
R4,566 Discovery Miles 45 660 Ships in 12 - 19 working days

Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.

The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression, L1 and q-quantile regression, regression in a spatial domain, ridge regression, semiparametric regression, nonlinear least squares, and time-series regression issues. For most of the regression methods, the author includes SAS procedure code, enabling readers to promptly perform their own regression runs.

A Comprehensive, Accessible Source on Regression Methodology and Modeling
Requiring only basic knowledge of statistics and calculus, this book discusses how to use regression analysis for decision making and problem solving. It shows readers the power and diversity of regression techniques without overwhelming them with calculations.

R Markdown - The Definitive Guide (Paperback): Yihui Xie, Garrett Grolemund, J.J. Allaire R Markdown - The Definitive Guide (Paperback)
Yihui Xie, Garrett Grolemund, J.J. Allaire
R1,159 Discovery Miles 11 590 Ships in 9 - 17 working days

R Markdown: The Definitive Guide is the first official book authored by the core R Markdown developers that provides a comprehensive and accurate reference to the R Markdown ecosystem. With R Markdown, you can easily create reproducible data analysis reports, presentations, dashboards, interactive applications, books, dissertations, websites, and journal articles, while enjoying the simplicity of Markdown and the great power of R and other languages. In this book, you will learn Basics: Syntax of Markdown and R code chunks, how to generate figures and tables, and how to use other computing languages Built-in output formats of R Markdown: PDF/HTML/Word/RTF/Markdown documents and ioslides/Slidy/Beamer/PowerPoint presentations Extensions and applications: Dashboards, Tufte handouts, xaringan/reveal.js presentations, websites, books, journal articles, and interactive tutorials Advanced topics: Parameterized reports, HTML widgets, document templates, custom output formats, and Shiny documents. Yihui Xie is a software engineer at RStudio. He has authored and co-authored several R packages, including knitr, rmarkdown, bookdown, blogdown, shiny, xaringan, and animation. He has published three other books, Dynamic Documents with R and knitr, bookdown: Authoring Books and Technical Documents with R Markdown, and blogdown: Creating Websites with R Markdown. J.J. Allaire is the founder of RStudio and the creator of the RStudio IDE. He is an author of several packages in the R Markdown ecosystem including rmarkdown, flexdashboard, learnr, and radix. Garrett Grolemund is the co-author of R for Data Science and author of Hands-On Programming with R. He wrote the lubridate R package and works for RStudio as an advocate who trains engineers to do data science with R and the Tidyverse.

Quantile Regression for Cross-Sectional and Time Series Data - Applications in Energy Markets Using R (Paperback, 1st ed.... Quantile Regression for Cross-Sectional and Time Series Data - Applications in Energy Markets Using R (Paperback, 1st ed. 2020)
Jorge M. Uribe, Montserrat Guillen
R1,573 Discovery Miles 15 730 Ships in 9 - 17 working days

This brief addresses the estimation of quantile regression models from a practical perspective, which will support researchers who need to use conditional quantile regression to measure economic relationships among a set of variables. It will also benefit students using the methodology for the first time, and practitioners at private or public organizations who are interested in modeling different fragments of the conditional distribution of a given variable. The book pursues a practical approach with reference to energy markets, helping readers learn the main features of the technique more quickly. Emphasis is placed on the implementation details and the correct interpretation of the quantile regression coefficients rather than on the technicalities of the method, unlike the approach used in the majority of the literature. All applications are illustrated with R.

Numerical and Analytical Methods with MATLAB for Electrical Engineers (Hardcover, New): William B. Ober, Andrew Stevens Numerical and Analytical Methods with MATLAB for Electrical Engineers (Hardcover, New)
William B. Ober, Andrew Stevens
R4,502 Discovery Miles 45 020 Ships in 12 - 19 working days

Combining academic and practical approaches to this important topic, Numerical and Analytical Methods with MATLAB(r) for Electrical Engineers is the ideal resource for electrical and computer engineering students. Based on a previous edition that was geared toward mechanical engineering students, this book expands many of the concepts presented in that book and replaces the original projects with new ones intended specifically for electrical engineering students.

This book includes:

  • An introduction to the MATLAB programming environment
  • Mathematical techniques for matrix algebra, root finding, integration, and differential equations
  • More advanced topics, including transform methods, signal processing, curve fitting, and optimization
  • An introduction to the MATLAB graphical design environment, Simulink

Exploring the numerical methods that electrical engineers use for design analysis and testing, this book comprises standalone chapters outlining a course that also introduces students to computational methods and programming skills, using MATLAB as the programming environment. Helping engineering students to develop a feel for structural programming-not just button-pushing with a software program-the illustrative examples and extensive assignments in this resource enable them to develop the necessary skills and then apply them to practical electrical engineering problems and cases.

Presenting Your Data with SPSS Explained (Hardcover): Perry R. Hinton, Isabella McMurray Presenting Your Data with SPSS Explained (Hardcover)
Perry R. Hinton, Isabella McMurray
R5,098 Discovery Miles 50 980 Ships in 12 - 19 working days

Data Presentation with SPSS Explained provides students with all the information they need to conduct small scale analysis of research projects using SPSS and present their results appropriately in their reports. Quantitative data can be collected in the form of a questionnaire, survey or experimental study. This book focuses on presenting this data clearly, in the form of tables and graphs, along with creating basic summary statistics. Data Presentation with SPSS Explained uses an example survey that is clearly explained step-by-step throughout the book. This allows readers to follow the procedures, and easily apply each step in the process to their own research and findings. No prior knowledge of statistics or SPSS is assumed, and everything in the book is carefully explained in a helpful and user-friendly way using worked examples. This book is the perfect companion for students from a range of disciplines including psychology, business, communication, education, health, humanities, marketing and nursing - many of whom are unaware that this extremely helpful program is available at their institution for their use.

An Introduction to SAGE Programming - With Applications to SAGE Interacts for Numerical Methods (Hardcover): R Mezei An Introduction to SAGE Programming - With Applications to SAGE Interacts for Numerical Methods (Hardcover)
R Mezei
R1,927 Discovery Miles 19 270 Ships in 12 - 19 working days

Features a simplified presentation of numerical methods by introducing and implementing SAGE programs An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods emphasizes how to implement numerical methods using SAGE Math and SAGE Interacts and also addresses the fundamentals of computer programming, including if statements, loops, functions, and interacts. The book also provides a unique introduction to SAGE and its computer algebra system capabilities; discusses second and higher order equations and estimate limits; and determines derivatives, integrals, and summations. Providing critical resources for developing successful interactive SAGE numerical computations, the book is accessible without delving into the mathematical rigor of numerical methods. The author illustrates the benefits of utilizing the SAGE language for calculus and the numerical analysis of various methods such as bisection methods, numerical integration, Taylor s expansions, and Newton s iterations. Providing an introduction to the terminology and concepts involved, An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods also features: * An introduction to computer programming using SAGE * Many practical examples throughout to illustrate the application of SAGE Interacts for various numerical methods * Discussions on how to use SAGE Interacts and SAGE Cloud in order to create mathematical demonstrations * Numerous homework problems and exercises that allow readers to practice their programming skillset * A companion website that includes related SAGE programming code and select solutions to the homework problems and exercises An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods is an ideal reference for applied mathematicians who need to employ SAGE for the study of numerical methods and analysis. The book is also an appropriate supplemental textbook for upper-undergraduate and graduate-level courses in numerical methods.

Analyzing Qualitative Data with MAXQDA - Text, Audio, and Video (Hardcover, 1st ed. 2019): Udo Kuckartz, Stefan Radiker Analyzing Qualitative Data with MAXQDA - Text, Audio, and Video (Hardcover, 1st ed. 2019)
Udo Kuckartz, Stefan Radiker
R2,248 Discovery Miles 22 480 Ships in 9 - 17 working days

This book presents strategies for analyzing qualitative and mixed methods data with MAXQDA software, and provides guidance on implementing a variety of research methods and approaches, e.g. grounded theory, discourse analysis and qualitative content analysis, using the software. In addition, it explains specific topics, such as transcription, building a coding frame, visualization, analysis of videos, concept maps, group comparisons and the creation of literature reviews. The book is intended for masters and PhD students as well as researchers and practitioners dealing with qualitative data in various disciplines, including the educational and social sciences, psychology, public health, business or economics.

Statistical Modeling With R - a dual frequentist and Bayesian approach for life scientists (Paperback): Pablo Inchausti Statistical Modeling With R - a dual frequentist and Bayesian approach for life scientists (Paperback)
Pablo Inchausti
R1,486 Discovery Miles 14 860 Ships in 9 - 17 working days

To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics. Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.

Introduction to Bioinformatics with R - A Practical Guide for Biologists (Paperback): Edward Curry Introduction to Bioinformatics with R - A Practical Guide for Biologists (Paperback)
Edward Curry
R1,866 Discovery Miles 18 660 Ships in 12 - 19 working days

In biological research, the amount of data available to researchers has increased so much over recent years, it is becoming increasingly difficult to understand the current state of the art without some experience and understanding of data analytics and bioinformatics. An Introduction to Bioinformatics with R: A Practical Guide for Biologists leads the reader through the basics of computational analysis of data encountered in modern biological research. With no previous experience with statistics or programming required, readers will develop the ability to plan suitable analyses of biological datasets, and to use the R programming environment to perform these analyses. This is achieved through a series of case studies using R to answer research questions using molecular biology datasets. Broadly applicable statistical methods are explained, including linear and rank-based correlation, distance metrics and hierarchical clustering, hypothesis testing using linear regression, proportional hazards regression for survival data, and principal component analysis. These methods are then applied as appropriate throughout the case studies, illustrating how they can be used to answer research questions. Key Features: * Provides a practical course in computational data analysis suitable for students or researchers with no previous exposure to computer programming. * Describes in detail the theoretical basis for statistical analysis techniques used throughout the textbook, from basic principles * Presents walk-throughs of data analysis tasks using R and example datasets. All R commands are presented and explained in order to enable the reader to carry out these tasks themselves. * Uses outputs from a large range of molecular biology platforms including DNA methylation and genotyping microarrays; RNA-seq, genome sequencing, ChIP-seq and bisulphite sequencing; and high-throughput phenotypic screens. * Gives worked-out examples geared towards problems encountered in cancer research, which can also be applied across many areas of molecular biology and medical research. This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. It is appropriate for use as a textbook or as a practical book for biological scientists looking to gain bioinformatics skills.

Clinical Data Quality Checks for CDISC Compliance Using SAS (Paperback): Sunil Gupta Clinical Data Quality Checks for CDISC Compliance Using SAS (Paperback)
Sunil Gupta
R1,421 Discovery Miles 14 210 Ships in 12 - 19 working days

Clinical Data Quality Checks for CDISC Compliance using SAS is the first book focused on identifying and correcting data quality and CDISC compliance issues with real-world innovative SAS programming techniques such as Proc SQL, metadata and macro programming. Learn to master Proc SQL's subqueries and summary functions for multi-tasking process. Drawing on his more than 25 years' experience in the pharmaceutical industry, the author provides a unique approach that empowers SAS programmers to take control of data quality and CDISC compliance. This book helps you create a system of SDTM and ADaM checks that can be tracked for continuous improvement. How often have you encountered issues such as missing required variables, duplicate records, invalid derived variables and invalid sequence of two dates? With the SAS programming techniques introduced in this book, you can start to monitor these and more complex data and CDISC compliance issues. With increased standardization in SDTM and ADaM specifications and data values, codelist dictionaries can be created for better organization, planning and maintenance. This book includes a SAS program to create excel files containing unique values from all SDTM and ADaM variables as columns. In addition, another SAS program compares SDTM and ADaM codelist dictionaries with codelists from define.xml specifications. Having tools to automate this process greatly saves time from doing it manually. Features SDTMs and ADaMs Vitals SDTMs and ADaMs Data CDISC Specifications Compliance CDISC Data Compliance Protocol Compliance Codelist Dictionary Compliance

Hands-On Programming with R (Paperback): Garrett Grolemund Hands-On Programming with R (Paperback)
Garrett Grolemund
R1,083 R733 Discovery Miles 7 330 Save R350 (32%) Ships in 12 - 19 working days

Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer's memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R's package system and debugging tools Practice and apply R programming concepts as you learn them

Modern Psychometrics with R (Paperback, 1st ed. 2018): Patrick Mair Modern Psychometrics with R (Paperback, 1st ed. 2018)
Patrick Mair
R1,858 Discovery Miles 18 580 Ships in 9 - 17 working days

This textbook describes the broadening methodology spectrum of psychological measurement in order to meet the statistical needs of a modern psychologist. The way statistics is used, and maybe even perceived, in psychology has drastically changed over the last few years; computationally as well as methodologically. R has taken the field of psychology by storm, to the point that it can now safely be considered the lingua franca for statistical data analysis in psychology. The goal of this book is to give the reader a starting point when analyzing data using a particular method, including advanced versions, and to hopefully motivate him or her to delve deeper into additional literature on the method. Beginning with one of the oldest psychometric model formulations, the true score model, Mair devotes the early chapters to exploring confirmatory factor analysis, modern test theory, and a sequence of multivariate exploratory method. Subsequent chapters present special techniques useful for modern psychological applications including correlation networks, sophisticated parametric clustering techniques, longitudinal measurements on a single participant, and functional magnetic resonance imaging (fMRI) data. In addition to using real-life data sets to demonstrate each method, the book also reports each method in three parts-- first describing when and why to apply it, then how to compute the method in R, and finally how to present, visualize, and interpret the results. Requiring a basic knowledge of statistical methods and R software, but written in a casual tone, this text is ideal for graduate students in psychology. Relevant courses include methods of scaling, latent variable modeling, psychometrics for graduate students in Psychology, and multivariate methods in the social sciences.

Phylogenetic Comparative Methods in R (Paperback): Liam J Revell, Luke J Harmon Phylogenetic Comparative Methods in R (Paperback)
Liam J Revell, Luke J Harmon
R1,466 R1,176 Discovery Miles 11 760 Save R290 (20%) Ships in 12 - 19 working days

An authoritative introduction to the latest comparative methods in evolutionary biology Phylogenetic comparative methods are a suite of statistical approaches that enable biologists to analyze and better understand the evolutionary tree of life, and shed vital new light on patterns of divergence and common ancestry among all species on Earth. This textbook shows how to carry out phylogenetic comparative analyses in the R statistical computing environment. Liam Revell and Luke Harmon provide an incisive conceptual overview of each method along with worked examples using real data and challenge problems that encourage students to learn by doing. By working through this book, students will gain a solid foundation in these methods and develop the skills they need to interpret patterns in the tree of life. Covers every major method of modern phylogenetic comparative analysis in R Explains the basics of R and discusses topics such as trait evolution, diversification, trait-dependent diversification, biogeography, and visualization Features a wealth of exercises and challenge problems Serves as an invaluable resource for students and researchers, with applications in ecology, evolution, anthropology, disease transmission, conservation biology, and a host of other areas Written by two of today's leading developers of phylogenetic comparative methods

An Introduction to R for Spatial Analysis and Mapping (Paperback, 2nd Revised edition): Chris Brunsdon, Lex Comber An Introduction to R for Spatial Analysis and Mapping (Paperback, 2nd Revised edition)
Chris Brunsdon, Lex Comber
R1,482 Discovery Miles 14 820 Ships in 12 - 19 working days

This is a new edition of the accessible and student-friendly 'how to' for anyone using R for the first time, for use in spatial statistical analysis, geocomputation and digital mapping. The authors, once again, take readers from 'zero to hero', updating the now standard text to further enable practical R applications in GIS, spatial analyses, spatial statistics, web-scraping and more. Revised and updated, each chapter includes: example data and commands to explore hands-on; scripts and coding to exemplify specific functionality; self-contained exercises for students to work through; embedded code within the descriptive text. The new edition includes detailed discussion of new and emerging packages within R like sf, ggplot, tmap, making it the go to introduction for all researchers collecting and using data with location attached. This is the introduction to the use of R for spatial statistical analysis, geocomputation, and GIS for all researchers - regardless of discipline - collecting and using data with location attached.

Learning R (Paperback): Richard Cotton Learning R (Paperback)
Richard Cotton
R1,371 R984 Discovery Miles 9 840 Save R387 (28%) Ships in 12 - 19 working days

Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, you'll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what you've learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code

Computer Intensive Methods in Statistics (Hardcover): Silvelyn  Zwanzig, Behrang Mahjani Computer Intensive Methods in Statistics (Hardcover)
Silvelyn Zwanzig, Behrang Mahjani
R4,959 Discovery Miles 49 590 Ships in 12 - 19 working days

Presents the main ideas of computer-intensive statistical methods Gives the algorithms for all the methods Uses various plots and illustrations for explaining the main ideas Features the theoretical backgrounds of the main methods. Includes R codes for the methods and examples

Multiscale Forecasting Models (Hardcover, 1st ed. 2018): Lida Mercedes Barba Maggi Multiscale Forecasting Models (Hardcover, 1st ed. 2018)
Lida Mercedes Barba Maggi
R3,198 R2,625 Discovery Miles 26 250 Save R573 (18%) Ships in 12 - 19 working days

This book presents two new decomposition methods to decompose a time series in intrinsic components of low and high frequencies. The methods are based on Singular Value Decomposition (SVD) of a Hankel matrix (HSVD). The proposed decomposition is used to improve the accuracy of linear and nonlinear auto-regressive models. Linear Auto-regressive models (AR, ARMA and ARIMA) and Auto-regressive Neural Networks (ANNs) have been found insufficient because of the highly complicated nature of some time series. Hybrid models are a recent solution to deal with non-stationary processes which combine pre-processing techniques with conventional forecasters, some pre-processing techniques broadly implemented are Singular Spectrum Analysis (SSA) and Stationary Wavelet Transform (SWT). Although the flexibility of SSA and SWT allows their usage in a wide range of forecast problems, there is a lack of standard methods to select their parameters. The proposed decomposition HSVD and Multilevel SVD are described in detail through time series coming from the transport and fishery sectors. Further, for comparison purposes, it is evaluated the forecast accuracy reached by SSA and SWT, both jointly with AR-based models and ANNs.

Computational Mathematics with SageMath (Paperback): Paul Zimmermann Computational Mathematics with SageMath (Paperback)
Paul Zimmermann
R2,063 Discovery Miles 20 630 Ships in 12 - 19 working days

SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB (R). To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems. Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level. Computational Mathematics with SageMath, written by researchers and by teachers at the high school, undergraduate, and graduate levels, focuses on the underlying mathematics necessary to use Sage efficiently and is illustrated with concrete examples. Part I is accessible to high school and undergraduate students and Parts II, III, and IV are suitable for graduate students, teachers, and researchers. This book is available under a Creative Commons license at sagebook.gforge.inria.fr.

Data Science with Julia (Paperback): Paul D. McNicholas, Peter Tait Data Science with Julia (Paperback)
Paul D. McNicholas, Peter Tait
R1,818 Discovery Miles 18 180 Ships in 12 - 19 working days

"This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Universite Cote d'Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Universite Cote d'Azur, Nice, France

Statistical Modelling in R (Hardcover): Murray Aitkin, Brian Francis, John Hinde, Ross Darnell Statistical Modelling in R (Hardcover)
Murray Aitkin, Brian Francis, John Hinde, Ross Darnell
R4,307 Discovery Miles 43 070 Ships in 12 - 19 working days

R is now the most widely used statistical package/language in university statistics departments and many research organisations. Its great advantages are that for many years it has been the leading-edge statistical package/language and that it can be freely downloaded from the R web site. Its cooperative development and open code also attracts many contributors meaning that the modelling and data analysis possibilities in R are much richer than in GLIM4, and so the R edition can be substantially more comprehensive than the GLIM4 edition. This text provides a comprehensive treatment of the theory of statistical modelling in R with an emphasis on applications to practical problems and an expanded discussion of statistical theory. A wide range of case studies is provided, using the normal, binomial, Poisson, multinomial, gamma, exponential and Weibull distributions, making this book ideal for graduates and research students in applied statistics and a wide range of quantitative disciplines.

Compositional Data Analysis in Practice (Paperback): Michael Greenacre Compositional Data Analysis in Practice (Paperback)
Michael Greenacre
R1,601 Discovery Miles 16 010 Ships in 12 - 19 working days

Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results and interpretation of this very special type of data. All aspects of compositional data analysis are considered: visualization, modelling, dimension-reduction, clustering and variable selection, with many examples in the fields of food science, archaeology, sociology and biochemistry, and a final chapter containing a complete case study using fatty acid compositions in ecology. The applicability of these methods extends to other fields such as linguistics, geochemistry, marketing, economics and finance. R Software The following repository contains data files and R scripts from the book https://github.com/michaelgreenacre/CODAinPractice. The R package easyCODA, which accompanies this book, is available on CRAN -- note that you should have version 0.25 or higher. The latest version of the package will always be available on R-Forge and can be installed from R with this instruction: install.packages("easyCODA", repos="http://R-Forge.R-project.org").

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Evolutionary Data Clustering: Algorithms…
Ibrahim Aljarah, Hossam Faris, … Hardcover R5,106 Discovery Miles 51 060
Graphs and Discrete Dirichlet Spaces
Matthias Keller, Daniel Lenz, … Hardcover R4,289 Discovery Miles 42 890
Multiaxial Fatigue
Darrell Socie, G. Marquis Hardcover R1,146 Discovery Miles 11 460
Computational Medicine in Data Mining…
Goran Rakocevic, Tijana Djukic, … Hardcover R4,577 R3,715 Discovery Miles 37 150
Optimum Accelerated Life Testing Models…
Preeti Wanti Srivastava Hardcover R4,071 Discovery Miles 40 710
Advances in Data Science and Management…
Samarjeet Borah, Valentina Emilia Balas, … Hardcover R5,690 Discovery Miles 56 900
Accessible Vacations - An Insider's…
Simon J. Hayhoe Hardcover R1,081 R786 Discovery Miles 7 860
FOCAPD-19/Proceedings of the 9th…
Salvador Garcia-Munoz, Carl D. Laird, … Hardcover R17,158 R11,686 Discovery Miles 116 860
Training Your Own Psychiatric Service…
Max Matthews Hardcover R811 R727 Discovery Miles 7 270
Preserving Electronic Evidence for Trial…
Ann D. Zeigler, Ernesto F. Rojas Paperback R1,448 Discovery Miles 14 480

 

Partners