![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology
Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p > 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p > 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p > 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Traditionally the Adams-Novikov spectral sequence has been a tool which has enabled the computation of generators and relations to describe homotopy groups. Here a natural geometric description of the sequence is given in terms of cobordism theory and manifolds with singularities. The author brings together many interesting results not widely known outside the USSR, including some recent work by Vershinin. This book will be of great interest to researchers into algebraic topology.
The author presents a topological approach to the problem of robustness of dynamic feedback control. First the gap-topology is introduced as a distance measure between systems. In this topology, stability of the closed loop system is a robust property. Furthermore, it is possible to solve the problem of optimally robust control in this setting. The book can be divided into two parts. The first chapters form an introduction to the topological approach towards robust stabilization. Although of theoretical nature, only general mathematical knowledge is required from the reader. The second part is devoted to compensator design. Several algorithms for computing an optimally robust controller in the gap-topology are presented and worked out. Therefore we hope that the book will not only be of interest to theoreticians, but that also practitioners will benefit from it.
The theory of surgery on manifolds has been generalized to categories of manifolds with group actions in several different ways. This book discusses some basic properties that such theories have in common. Special emphasis is placed on analogs of the fourfold periodicity theorems in ordinary surgery and the roles of standard general position hypotheses on the strata of manifolds with group actions. The contents of the book presuppose some familiarity with the basic ideas of surgery theory and transformation groups, but no previous knowledge of equivariant surgery is assumed. The book is designed to serve either as an introduction to equivariant surgery theory for advanced graduate students and researchers in related areas, or as an account of the authors' previously unpublished work on periodicity for specialists in surgery theory or transformation groups.
This book demonstrates the lively interaction between algebraic topology, very low dimensional topology and combinatorial group theory. Many of the ideas presented are still in their infancy, and it is hoped that the work here will spur others to new and exciting developments. Among the many techniques disussed are the use of obstruction groups to distinguish certain exact sequences and several graph theoretic techniques with applications to the theory of groups.
The Pontryagin-van Kampen duality theorem and the Bochner theorem on positive-definite functions are known to be true for certain abelian topological groups that are not locally compact. The book sets out to present in a systematic way the existing material. It is based on the original notion of a nuclear group, which includes LCA groups and nuclear locally convex spaces together with their additive subgroups, quotient groups and products. For (metrizable, complete) nuclear groups one obtains analogues of the Pontryagin duality theorem, of the Bochner theorem and of the L vy-Steinitz theorem on rearrangement of series (an answer to an old question of S. Ulam). The book is written in the language of functional analysis. The methods used are taken mainly from geometry of numbers, geometry of Banach spaces and topological algebra. The reader is expected only to know the basics of functional analysis and abstract harmonic analysis.
During the Fall Semester of 1987, Stevo Todorcevic gave a series of lectures at the University of Colorado. These notes of the course, taken by the author, give a novel and fast exposition of four chapters of Set Theory. The first two chapters are about the connection between large cardinals and Lebesque measure. The third is on forcing axioms such as Martin's axiom or the Proper Forcing Axiom. The fourth chapter looks at the method of minimal walks and p-functions and their applications. The book is addressed to researchers and graduate students interested in Set Theory, Set-Theoretic Topology and Measure Theory.
With one exception, these papers are original and fully refereed research articles on various applications of Category Theory to Algebraic Topology, Logic and Computer Science. The exception is an outstanding and lengthy survey paper by Joyal/Street (80 pp) on a growing subject: it gives an account of classical Tannaka duality in such a way as to be accessible to the general mathematical reader, and to provide a key for entry to more recent developments and quantum groups. No expertise in either representation theory or category theory is assumed. Topics such as the Fourier cotransform, Tannaka duality for homogeneous spaces, braided tensor categories, Yang-Baxter operators, Knot invariants and quantum groups are introduced and studies. From the Contents: P.J. Freyd: Algebraically complete categories.- J.M.E. Hyland: First steps in synthetic domain theory.- G. Janelidze, W. Tholen: How algebraic is the change-of-base functor?.- A. Joyal, R. Street: An introduction to Tannaka duality and quantum groups.- A. Joyal, M. Tierney: Strong stacks andclassifying spaces.- A. Kock: Algebras for the partial map classifier monad.- F.W. Lawvere: Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes.- S.H. Schanuel: Negative sets have Euler characteristic and dimension.-
A central problem in algebraic topology is the calculation of the values of the stable homotopy groups of spheres +*S. In this book, a new method for this is developed based upon the analysis of the Atiyah-Hirzebruch spectral sequence. After the tools for this analysis are developed, these methods are applied to compute inductively the first 64 stable stems, a substantial improvement over the previously known 45. Much of this computation is algorithmic and is done by computer. As an application, an element of degree 62 of Kervaire invariant one is shown to have order two. This book will be useful to algebraic topologists and graduate students with a knowledge of basic homotopy theory and Brown-Peterson homology; for its methods, as a reference on the structure of the first 64 stable stems and for the tables depicting the behavior of the Atiyah-Hirzebruch and classical Adams spectral sequences through degree 64.
The book is devoted to two natural problems, the existence and unicity of minimal projections in Banach space. Connections are established between the latter and unicity in mathematical programming problems and also with the problem of the characterization of Hilbert spaces. The book also contains a Kolmogorov type criterion for minimal projections and detailed descriptions of the Fourier operators. Presenting both new results and problems for further investigations, this book is addressed to researchers and graduate students interested in geometric functional analysis and to applications.
This is the first of two volumes which will provide an introduction to modern developments in the representation theory of finite groups and associative algebras. The subject is viewed from the perspective of homological algebra and the theory of representations of finite dimensional algebras; the author emphasises modular representations and the homological algebra associated with their categories. This volume is self-contained and independent of its successor, being primarily concerned with the exposition of the necessary background material. The heart of the book is a lengthy introduction to the (Auslander-Reiten) representation theory of finite dimensional algebras, in which the techniques of quivers with relations and almost split sequences are discussed in detail. Much of the material presented here has never appeared in book form. Consequently students and research workers studying group theory and indeed algebra in general will be grateful to Dr Benson for supplying an exposition of a good deal of the essential results of modern representation theory.
The Motivation. With intensified use of mathematical ideas, the methods and techniques of the various sciences and those for the solution of practical problems demand of the mathematician not only greater readi ness for extra-mathematical applications but also more comprehensive orientations within mathematics. In applications, it is frequently less important to draw the most far-reaching conclusions from a single mathe matical idea than to cover a subject or problem area tentatively by a proper "variety" of mathematical theories. To do this the mathematician must be familiar with the shared as weIl as specific features of differ ent mathematical approaches, and must have experience with their inter connections. The Atiyah-Singer Index Formula, "one of the deepest and hardest results in mathematics," "probably has wider ramifications in topology and analysis than any other single result" (F. Hirzebruch) and offers perhaps a particularly fitting example for such an introduction to "Mathematics" In spi te of i ts difficulty and immensely rich interrela tions, the realm of the Index Formula can be delimited, and thus its ideas and methods can be made accessible to students in their middle * semesters. In fact, the Atiyah-Singer Index Formula has become progressively "easier" and "more transparent" over the years. The discovery of deeper and more comprehensive applications (see Chapter 111. 4) brought with it, not only a vigorous exploration of its methods particularly in the many facetted and always new presentations of the material by M. F."
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
These are proceedings of an International Conference on Algebraic Topology, held 28 July through 1 August, 1986, at Arcata, California. The conference served in part to mark the 25th anniversary of the journal "Topology" and 60th birthday of Edgar H. Brown. It preceded ICM 86 in Berkeley, and was conceived as a successor to the Aarhus conferences of 1978 and 1982. Some thirty papers are included in this volume, mostly at a research level. Subjects include cyclic homology, H-spaces, transformation groups, real and rational homotopy theory, acyclic manifolds, the homotopy theory of classifying spaces, instantons and loop spaces, and complex bordism.
The book is the second part of an intended three-volume treatise on semialgebraic topology over an arbitrary real closed field R. In the first volume (LNM 1173) the category LSA(R) or regular paracompact locally semialgebraic spaces over R was studied. The category WSA(R) of weakly semialgebraic spaces over R - the focus of this new volume - contains LSA(R) as a full subcategory. The book provides ample evidence that WSA(R) is "the" right cadre to understand homotopy and homology of semialgebraic sets, while LSA(R) seems to be more natural and beautiful from a geometric angle. The semialgebraic sets appear in LSA(R) and WSA(R) as the full subcategory SA(R) of affine semialgebraic spaces. The theory is new although it borrows from algebraic topology. A highlight is the proof that every generalized topological (co)homology theory has a counterpart in WSA(R) with in some sense "the same," or even better, properties as the topological theory. Thus we may speak of ordinary (=singular) homology groups, orthogonal, unitary or symplectic K-groups, and various sorts of cobordism groups of a semialgebraic set over R. If R is not archimedean then it seems difficult to develop a satisfactory theory of these groups within the category of semialgebraic sets over R: with weakly semialgebraic spaces this becomes easy. It remains for us to interpret the elements of these groups in geometric terms: this is done here for ordinary (co)homology.
This selection of papers from the Beijing conference gives a cross-section of the current trends in the field of fixed point theory as seen by topologists and analysts. Apart from one survey article, they are all original research articles, on topics including equivariant theory, extensions of Nielsen theory, periodic orbits of discrete and continuous dynamical systems, and new invariants and techniques in topological approaches to analytic problems.
This monograph is an account of the author's investigations of gradient vector flows on compact manifolds with boundary. Many mathematical structures and constructions in the book fit comfortably in the framework of Morse Theory and, more generally, of the Singularity Theory of smooth maps.The geometric and combinatorial structures, arising from the interactions of vector flows with the boundary of the manifold, are surprisingly rich. This geometric setting leads organically to many encounters with Singularity Theory, Combinatorics, Differential Topology, Differential Geometry, Dynamical Systems, and especially with the boundary value problems for ordinary differential equations. This diversity of connections animates the book and is the main motivation behind it.The book is divided into two parts. The first part describes the flows in three dimensions. It is more pictorial in nature. The second part deals with the multi-dimensional flows, and thus is more analytical. Each of the nine chapters starts with a description of its purpose and main results. This organization provides the reader with independent entrances into different chapters.
The contributions in this volume summarize parts of a seminar on conformal geometry which was held at the Max-Planck-Institut fur Mathematik in Bonn during the academic year 1985/86. The intention of this seminar was to study conformal structures on mani folds from various viewpoints. The motivation to publish seminar notes grew out of the fact that in spite of the basic importance of this field to many topics of current interest (low-dimensional topology, analysis on manifolds . . . ) there seems to be no coherent introduction to conformal geometry in the literature. We have tried to make the material presented in this book self-contained, so it should be accessible to students with some background in differential geometry. Moreover, we hope that it will be useful as a reference and as a source of inspiration for further research. Ravi Kulkarni/Ulrich Pinkall Conformal Structures and Mobius Structures Ravi S. Kulkarni* Contents 0 Introduction 2 1 Conformal Structures 4 2 Conformal Change of a Metric, Mobius Structures 8 3 Liouville's Theorem 12 n 4 The GroupsM(n) andM(E ) 13 5 Connection with Hyperbol ic Geometry 16 6 Constructions of Mobius Manifolds 21 7 Development and Holonomy 31 8 Ideal Boundary, Classification of Mobius Structures 35 * Partially supported by the Max-Planck-Institut fur Mathematik, Bonn, and an NSF grant. 2 O Introduction (0. 1) Historically, the stereographic projection and the Mercator projection must have appeared to mathematicians very startling."
This volume collects six related articles. The first is the notes (written by J.S. Milne) of a major part of the seminar "Periodes des Int grales Abeliennes" given by P. Deligne at I'.B.E.S., 1978-79. The second article was written for this volume (by P. Deligne and J.S. Milne) and is largely based on: N Saavedra Rivano, Categories tannakiennes, Lecture Notes in Math. 265, Springer, Heidelberg 1972. The third article is a slight expansion of part of: J.S. Milne and Kuang-yen Shih, Sh ura varieties: conjugates and the action of complex conjugation 154 pp. (Unpublished manuscript, October 1979). The fourth article is based on a letter from P. De1igne to R. Langlands, dated 10th April, 1979, and was revised and completed (by De1igne) in July, 1981. The fifth article is a slight revision of another section of the manuscript of Milne and Shih referred to above. The sixth article, by A. Ogus, dates from July, 1980.
Bruhat-Tits theory that suffices for the main applications. Part III treats modern topics that have become important in current research. Part IV provides a few sample applications of the theory. The appendices contain further details on the topic of integral models. |
You may like...
Signal Transduction in Plants - Current…
S.K. Sopory, Ralf Oelmuller, …
Hardcover
R5,413
Discovery Miles 54 130
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R3,900
Discovery Miles 39 000
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
|