Thermal treatment of materials occupies a significant,
increasing proportion of MSE activity and is an integral component
of modern curricula as well as a highly monetized component of
industrial production. Laser processing of materials offers
advantages over conventional methods of processing. Some of these
advantages include fast processing, precision of operation, low
cost and local treatment. Analytical modeling of laser processing
gives insight into the physical and mathematical aspects of the
problem and provides useful information on process optimization.
This work from Professor Yilbas, a world-recognized expert in laser
materials processing, provides the necessary depth and weight of
analysis, collating mathematical and physical modeling and
experimentation with the necessary discussion of applications. It
meets coherence in topics with high technical quality. It
encompasses the basics of laser processing and provides an
introduction to analytical modeling of the process. Fundamentals
and formulation of the heating process are presented for numerous
heating conditions.
Detailed analytical solutions for laser heating problems (including
thermal stress) aids analysis of linkage between process
parameters, such as laser pulse and laser intensity, and material
response, such as temperature and stress Encompasses practical
solutions to thermal heating problems (unlike the length solutions
of numerical schemes) Extensive fourier and non-fourier treatments
and consequent analysis provides improved understanding of
mathematical transformations
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!