0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision

Buy Now

Genetic Learning for Adaptive Image Segmentation (Hardcover, 1994 ed.) Loot Price: R4,734
Discovery Miles 47 340
Genetic Learning for Adaptive Image Segmentation (Hardcover, 1994 ed.): Bir Bhanu, Sungkee Lee

Genetic Learning for Adaptive Image Segmentation (Hardcover, 1994 ed.)

Bir Bhanu, Sungkee Lee

Series: The Springer International Series in Engineering and Computer Science, 287

 (sign in to rate)
Loot Price R4,734 Discovery Miles 47 340 | Repayment Terms: R444 pm x 12*

Bookmark and Share

Expected to ship within 12 - 17 working days

Image segmentation is generally the first task in any automated image understanding application, such as autonomous vehicle navigation, object recognition, photointerpretation, etc. All subsequent tasks, such as feature extraction, object detection, and object recognition, rely heavily on the quality of segmentation. One of the fundamental weaknesses of current image segmentation algorithms is their inability to adapt the segmentation process as real-world changes are reflected in the image. Only after numerous modifications to an algorithm's control parameters can any current image segmentation technique be used to handle the diversity of images encountered in real-world applications. Genetic Learning for Adaptive Image Segmentation presents the first closed-loop image segmentation system that incorporates genetic and other algorithms to adapt the segmentation process to changes in image characteristics caused by variable environmental conditions, such as time of day, time of year, weather, etc. Image segmentation performance is evaluated using multiple measures of segmentation quality. These quality measures include global characteristics of the entire image as well as local features of individual object regions in the image. This adaptive image segmentation system provides continuous adaptation to normal environmental variations, exhibits learning capabilities, and provides robust performance when interacting with a dynamic environment. This research is directed towards adapting the performance of a well known existing segmentation algorithm (Phoenix) across a wide variety of environmental conditions which cause changes in the image characteristics. The book presents a large number of experimental results and compares performance with standard techniques used in computer vision for both consistency and quality of segmentation results. These results demonstrate, (a) the ability to adapt the segmentation performance in both indoor and outdoor color imagery, and (b) that learning from experience can be used to improve the segmentation performance over time.

General

Imprint: Springer
Country of origin: Netherlands
Series: The Springer International Series in Engineering and Computer Science, 287
Release date: August 1994
First published: 1994
Authors: Bir Bhanu • Sungkee Lee
Dimensions: 235 x 155 x 17mm (L x W x T)
Format: Hardcover
Pages: 271
Edition: 1994 ed.
ISBN-13: 978-0-7923-9491-4
Categories: Books > Computing & IT > Applications of computing > Artificial intelligence > Computer vision
Promotions
LSN: 0-7923-9491-7
Barcode: 9780792394914

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Computer Vision for Structural Dynamics…
D. Feng Hardcover R3,548 Discovery Miles 35 480
Advanced Signal Processing for Industry…
Irshad Ahmad Ansari, Varun Bajaj Hardcover R3,542 Discovery Miles 35 420
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R9,088 Discovery Miles 90 880
AI Art - Poetry - A Style Transfer Photo…
Shane Neeley Hardcover R1,375 Discovery Miles 13 750
The Future of Technology in Education…
Harib Shaqsy Hardcover R953 R820 Discovery Miles 8 200
Amazon Rekognition Developer Guide
Development Team Hardcover R1,942 Discovery Miles 19 420
Change Detection and Image Time-Series…
A Atto Hardcover R4,294 Discovery Miles 42 940
Change Detection and Image Time-Series…
A Atto Hardcover R4,292 Discovery Miles 42 920
Deep Learning For Beginners - 2…
Steven Cooper Hardcover R833 R740 Discovery Miles 7 400
Metaverse - A Beginner's Guide to…
Harper Fraley Hardcover R889 R768 Discovery Miles 7 680
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, … Hardcover R7,019 Discovery Miles 70 190
One of Us
Louis B Rosenberg Hardcover R413 R386 Discovery Miles 3 860

See more

Partners