0
Your cart

Your cart is empty

Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Waste treatment & disposal > Sewage treatment & disposal

Not currently available

A Novel Membrane Process for Autotrophic Denitrification (Paperback, Illustrated Ed) Loot Price: R3,368
Discovery Miles 33 680
A Novel Membrane Process for Autotrophic Denitrification (Paperback, Illustrated Ed): K. Jahan

A Novel Membrane Process for Autotrophic Denitrification (Paperback, Illustrated Ed)

K. Jahan

Series: WERF Research Report Series

 (sign in to rate)
Loot Price R3,368 Discovery Miles 33 680 | Repayment Terms: R316 pm x 12*

Bookmark and Share

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

Biological denitrification by heterotrophic bacteria is common in the wastewater industry in the U.S. and in drinking water processing in Europe. To facilitate heterotrophic denitrification, organic compounds such as methanol, ethanol and acetic acid are added to provide a carbon source for the bacteria. The resulting organic carbon residual may create problems with chlorination. The addition of these carbon compounds is expensive and results in added sludge production. This study focused on the use of autotrophic hydrogen oxidizing bacteria for denitrification. The method transfers hydrogen gas to solution via microporous hollow fiber membranes. Typically, gases are supplied to a system using conventional bubble diffusers. The conventional bubble aeration system has a low gas transfer efficiency, and, as a result, the cost of dissolving the required amount of gas is very high. In this study, microporous hollow fiber membranes were employed to supply hydrogen gas to hydrogen oxidizing autotrophic bacteria. Laboratory scale membrane modules were constructed and mass transfer studies were carried out to develop the design correlations for hydrogen gas transfer. A mixed culture was obtained and acclimated for batch denitrification studies. Both Sodium carbonate and carbon dioxide were used to deliver inorganic carbon. Bench scale continuous flow biofilm reactors containing plastic media were operated to remove nitrate from water. The required hydrogen gas was supplied at a constant rate via gas transfer modules, containing sealed end microporous hollow fiber membranes. The reactors were optimized for removal of nitrate and nitrite by varying the recycle ratios and hydraulic detention time. Experimental results indicated the presence of hydrogen oxidizing denitrifiers in wastewater sludge. Adequate pH control was possible and the pH averaged around 6.95. Gas transfer studies indicated that hydrogen transfer was primarily controlled by liquid film diffusion. Hydrogen gas was successfully delivered to the reactor via the hollow fiber membrane gas transfer module. Nitrate and hydrogen concentration measurements indicated that the system did not experience hydrogen limitations at detention times of 3.25 hours or greater. The use of hollow fiber membrane module appears to be a viable technology for transferring hydrogen gas to water. The research results in this report provide valuable information for pilot and full-scale studies for the water/wastewater community focusing on membrane processes for autotrophic denitrification.

General

Imprint: Iwa Publishing
Country of origin: United Kingdom
Series: WERF Research Report Series
Release date: June 2003
First published: July 2003
Authors: K. Jahan
Dimensions: 234 x 156 x 18mm (L x W x T)
Format: Paperback
Pages: 74
Edition: Illustrated Ed
ISBN-13: 978-1-84339-643-7
Categories: Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Waste treatment & disposal > Sewage treatment & disposal
Promotions
LSN: 1-84339-643-2
Barcode: 9781843396437

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners