Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications such as sound and image processing, denoising, data compression, tomography, and medical imaging. The study of wavelets remains a very active field of research, and many of its central techniques and ideas have evolved into new and promising research areas. This volume, a collection of invited contributions developed from talks at an international conference on wavelets, is divided into three parts: Part I is devoted to the mathematical theory of wavelets and features several papers on wavelet sets and the construction of wavelet bases in different settings. Part II looks at the use of multiscale harmonic analysis for understanding the geometry of large data sets and extracting information from them. Part III focuses on applications of wavelet theory to the study of several real-world problems. Overall, the book is an excellent reference for graduate students, researchers, and practitioners in theoretical and applied mathematics, or in engineering.
Sampling, wavelets, and tomography are three active areas of contemporary mathematics sharing common roots that lie at the heart of harmonic and Fourier analysis. The advent of new techniques in mathematical analysis has strengthened their interdependence and led to some new and interesting results in the field. This state-of-the-art book not only presents new results in these research areas, but it also demonstrates the role of sampling in both wavelet theory and tomography. Specific topics covered include: * Robustness of Regular Sampling in Sobolev Algebras * Irregular and Semi-Irregular Weyl-Heisenberg Frames * Adaptive Irregular Sampling in Meshfree Flow Simulation * Sampling Theorems for Non-Bandlimited Signals * Polynomial Matrix Factorization, Multidimensional Filter Banks, and Wavelets * Generalized Frame Multiresolution Analysis of Abstract Hilbert Spaces * Sampling Theory and Parallel-Beam Tomography * Thin-Plate Spline Interpolation in Medical Imaging * Filtered Back-Projection Algorithms for Spiral Cone Computed Tomography Aimed at mathematicians, scientists, and engineers working in signal and image processing and medical imaging, the work is designed to be accessible to an audience with diverse mathematical backgrounds. Although the volume reflects the contributions of renowned mathematicians and engineers, each chapter has an expository introduction written for the non-specialist. One of the key features of the book is an introductory chapter stressing the interdependence of the three main areas covered. A comprehensive index completes the work. Contributors: J.J. Benedetto, N.K. Bose, P.G. Casazza, Y.C. Eldar, H.G. Feichtinger, A.Faridani, A. Iske, S. Jaffard, A. Katsevich, S. Lertrattanapanich, G. Lauritsch, B. Mair, M. Papadakis, P.P. Vaidyanathan, T. Werther, D.C. Wilson, A.I. Zayed
Paul Butzer, who is considered the academic father and grandfather of many prominent mathematicians, has established one of the best schools in approximation and sampling theory in the world. He is one of the leading figures in approximation, sampling theory, and harmonic analysis. Although on April 15, 2013, Paul Butzer turned 85 years old, remarkably, he is still an active research mathematician. In celebration of Paul Butzer's 85th birthday, New Perspectives on Approximation and Sampling Theory is a collection of invited chapters on approximation, sampling, and harmonic analysis written by students, friends, colleagues, and prominent active mathematicians. Topics covered include approximation methods using wavelets, multi-scale analysis, frames, and special functions. New Perspectives on Approximation and Sampling Theory requires basic knowledge of mathematical analysis, but efforts were made to keep the exposition clear and the chapters self-contained. This volume will appeal to researchers and graduate students in mathematics, applied mathematics and engineering, in particular, engineers working in signal and image processing.
"Multiscale Signal Analysis and Modeling" presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.
Advances in Shannon's Sampling Theory provides an up-to-date discussion of sampling theory, emphasizing the interaction between sampling theory and other branches of mathematical analysis, including the theory of boundary-value problems, frames, wavelets, multiresolution analysis, special functions, and functional analysis. The author not only traces the history and development of the theory, but also presents original research and results that have never before appeared in book form. Recent techniques covered include the Feichtinger-Groechenig sampling theory; frames, wavelets, multiresolution analysis and sampling; boundary-value problems and sampling theorems; and special functions and sampling theorems. The book will interest graduate students and professionals in electrical engineering, communications, and applied mathematics.
Advances in Shannon's Sampling Theory provides an up-to-date discussion of sampling theory, emphasizing the interaction between sampling theory and other branches of mathematical analysis, including the theory of boundary-value problems, frames, wavelets, multiresolution analysis, special functions, and functional analysis. The author not only traces the history and development of the theory, but also presents original research and results that have never before appeared in book form. Recent techniques covered include the Feichtinger-Gr?chenig sampling theory; frames, wavelets, multiresolution analysis and sampling; boundary-value problems and sampling theorems; and special functions and sampling theorems. The book will interest graduate students and professionals in electrical engineering, communications, and applied mathematics.
Paul Butzer, who is considered the academic father and grandfather of many prominent mathematicians, has established one of the best schools in approximation and sampling theory in the world. He is one of the leading figures in approximation, sampling theory, and harmonic analysis. Although on April 15, 2013, Paul Butzer turned 85 years old, remarkably, he is still an active research mathematician. In celebration of Paul Butzer's 85th birthday, New Perspectives on Approximation and Sampling Theory is a collection of invited chapters on approximation, sampling, and harmonic analysis written by students, friends, colleagues, and prominent active mathematicians. Topics covered include approximation methods using wavelets, multi-scale analysis, frames, and special functions. New Perspectives on Approximation and Sampling Theory requires basic knowledge of mathematical analysis, but efforts were made to keep the exposition clear and the chapters self-contained. This volume will appeal to researchers and graduate students in mathematics, applied mathematics and engineering, in particular, engineers working in signal and image processing.
Sampling, wavelets, and tomography are three active areas of contemporary mathematics sharing common roots that lie at the heart of harmonic and Fourier analysis. The advent of new techniques in mathematical analysis has strengthened their interdependence and led to some new and interesting results in the field. This state-of-the-art book not only presents new results in these research areas, but it also demonstrates the role of sampling in both wavelet theory and tomography. Specific topics covered include: * Robustness of Regular Sampling in Sobolev Algebras * Irregular and Semi-Irregular Weyl-Heisenberg Frames * Adaptive Irregular Sampling in Meshfree Flow Simulation * Sampling Theorems for Non-Bandlimited Signals * Polynomial Matrix Factorization, Multidimensional Filter Banks, and Wavelets * Generalized Frame Multiresolution Analysis of Abstract Hilbert Spaces * Sampling Theory and Parallel-Beam Tomography * Thin-Plate Spline Interpolation in Medical Imaging * Filtered Back-Projection Algorithms for Spiral Cone Computed Tomography Aimed at mathematicians, scientists, and engineers working in signal and image processing and medical imaging, the work is designed to be accessible to an audience with diverse mathematical backgrounds. Although the volume reflects the contributions of renowned mathematicians and engineers, each chapter has an expository introduction written for the non-specialist. One of the key features of the book is an introductory chapter stressing the interdependence of the three main areas covered. A comprehensive index completes the work. Contributors: J.J. Benedetto, N.K. Bose, P.G. Casazza, Y.C. Eldar, H.G. Feichtinger, A. Faridani, A. Iske, S. Jaffard, A. Katsevich, S. Lertrattanapanich, G. Lauritsch, B. Mair, M. Papadakis, P.P. Vaidyanathan, T. Werther, D.C. Wilson, A.I. Zayed
|
You may like...
Freedom - Stories Celebrating the…
Amnesty International USA
Paperback
Sophistic Views of the Epic Past from…
Paola Bassino, Nicolo Benzi
Hardcover
R3,221
Discovery Miles 32 210
Writing on Skin in the Age of Chaucer
Nicole Nyffenegger, Katrin Rupp
Hardcover
R3,681
Discovery Miles 36 810
|