Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This text is about the geometric theory of discrete groups and the associated tesselations of the underlying space. The theory of Möbius transformations in n-dimensional Euclidean space is developed. These transformations are discussed as isometries of hyperbolic space and are then identified with the elementary transformations of complex analysis. A detailed account of analytic hyperbolic trigonometry is given, and this forms the basis of the subsequent analysis of tesselations of the hyperbolic plane. Emphasis is placed on the geometrical aspects of the subject and on the universal constraints which must be satisfied by all tesselations.
Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.
How do mathematicians approach a problem, explore the possibilities, and develop an understanding of a whole area around it? The issue is not simply about obtaining 'the answer'; rather, the author explains that a mathematical problem is just one of many related ones that should be simultaneously investigated and discussed at various levels, and that understanding this is a crucial step in becoming a creative mathematician. The title begins with some good advice about procedure, presentation, and organisation that will benefit every mathematician, budding, teaching or practised. In the rest of the title, the author presents a series of simple problems, then, through discussion, consideration of special cases, computer experiments, and so on, the reader is taken through these same problems, but at an increasing level of sophistication and generality. Mathematics is rarely a closed title, and seemingly innocent problems, when examined and explored, can lead to results of significance.
This text gives a basic introduction, and a unified approach, to algebra and geometry. Alan Beardon covers the ideas of complex numbers, scalar and vector products, determinants, linear algebra, group theory, permutation groups, symmetry groups, and various aspects of geometry including groups of isometries, rotations, and spherical geometry. The emphasis is on the interaction among these topics. The text is divided into short sections, with exercises at the end of each section.
This text gives a basic introduction, and a unified approach, to algebra and geometry. Alan Beardon covers the ideas of complex numbers, scalar and vector products, determinants, linear algebra, group theory, permutation groups, symmetry groups, and various aspects of geometry including groups of isometries, rotations, and spherical geometry. The emphasis is on the interaction among these topics. The text is divided into short sections, with exercises at the end of each section.
This book focuses on complex analytic dynamics, which dates from 1916 and is currently attracting considerable interest. The text provides a comprehensive, well-organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The coverage extends from early memoirs of Fatou and Julia to important recent results and methods of Sullivan and Shishikura. Many details of the proofs have not appeared in print before.
Mathematical Explorations follows on from the author's previous book, Creative Mathematics, in the same series, and gives the reader experience in working on problems requiring a little more mathematical maturity. The author's main aim is to show that problems are often solved by using mathematics that is not obviously connected to the problem, and readers are encouraged to consider as wide a variety of mathematical ideas as possible. In each case, the emphasis is placed on the important underlying ideas rather than on the solutions for their own sake. To enhance understanding of how mathematical research is conducted, each problem has been chosen not for its mathematical importance, but because it provides a good illustration of how arguments can be developed. While the reader does not require a deep mathematical background to tackle these problems, they will find their mathematical understanding is enriched by attempting to solve them.
|
You may like...
|