Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Features Self-contained book suitable for graduate students and post-doctoral fellows in financial mathematics and data science, as well as for practitioners working in the financial industry who deal with big data All results are presented visually to aid in understanding of concepts.
Inhomogeneous Random Evolutions and Their Applications explains how to model various dynamical systems in finance and insurance with non-homogeneous in time characteristics. It includes modeling for: financial underlying and derivatives via Levy processes with time-dependent characteristics; limit order books in the algorithmic and HFT with counting price changes processes having time-dependent intensities; risk processes which count number of claims with time-dependent conditional intensities; multi-asset price impact from distressed selling; regime-switching Levy-driven diffusion-based price dynamics. Initial models for those systems are very complicated, which is why the author's approach helps to simplified their study. The book uses a very general approach for modeling of those systems via abstract inhomogeneous random evolutions in Banach spaces. To simplify their investigation, it applies the first averaging principle (long-run stability property or law of large numbers [LLN]) to get deterministic function on the long run. To eliminate the rate of convergence in the LLN, it uses secondly the functional central limit theorem (FCLT) such that the associated cumulative process, centered around that deterministic function and suitably scaled in time, may be approximated by an orthogonal martingale measure, in general; and by standard Brownian motion, in particular, if the scale parameter increases. Thus, this approach allows the author to easily link, for example, microscopic activities with macroscopic ones in HFT, connecting the parameters driving the HFT with the daily volatilities. This method also helps to easily calculate ruin and ultimate ruin probabilities for the risk process. All results in the book are new and original, and can be easily implemented in practice.
The theory and applications of random dynamical systems (RDS) are at the cutting edge of research in mathematics and economics, particularly in modeling the long-run evolution of economic systems subject to exogenous random shocks. Despite this interest, there are no books available that solely focus on RDS in finance and economics. Exploring this emerging area, Random Dynamical Systems in Finance shows how to model RDS in financial applications. Through numerous examples, the book explains how the theory of RDS can describe the asymptotic and qualitative behavior of systems of random and stochastic differential/difference equations in terms of stability, invariant manifolds, and attractors. The authors present many models of RDS and develop techniques for implementing RDS as approximations to financial models and option pricing formulas. For example, they approximate geometric Markov renewal processes in ergodic, merged, double-averaged, diffusion, normal deviation, and Poisson cases and apply the obtained results to option pricing formulas. With references at the end of each chapter, this book provides a variety of RDS for approximating financial models, presents numerous option pricing formulas for these models, and studies the stability and optimal control of RDS. The book is useful for researchers, academics, and graduate students in RDS and mathematical finance as well as practitioners working in the financial industry.
The theory and applications of random dynamical systems (RDS) are at the cutting edge of research in mathematics and economics, particularly in modeling the long-run evolution of economic systems subject to exogenous random shocks. Despite this interest, there are no books available that solely focus on RDS in finance and economics. Exploring this emerging area, Random Dynamical Systems in Finance shows how to model RDS in financial applications. Through numerous examples, the book explains how the theory of RDS can describe the asymptotic and qualitative behavior of systems of random and stochastic differential/difference equations in terms of stability, invariant manifolds, and attractors. The authors present many models of RDS and develop techniques for implementing RDS as approximations to financial models and option pricing formulas. For example, they approximate geometric Markov renewal processes in ergodic, merged, double-averaged, diffusion, normal deviation, and Poisson cases and apply the obtained results to option pricing formulas. With references at the end of each chapter, this book provides a variety of RDS for approximating financial models, presents numerous option pricing formulas for these models, and studies the stability and optimal control of RDS. The book is useful for researchers, academics, and graduate students in RDS and mathematical finance as well as practitioners working in the financial industry.
Inhomogeneous Random Evolutions and Their Applications explains how to model various dynamical systems in finance and insurance with non-homogeneous in time characteristics. It includes modeling for: financial underlying and derivatives via Levy processes with time-dependent characteristics; limit order books in the algorithmic and HFT with counting price changes processes having time-dependent intensities; risk processes which count number of claims with time-dependent conditional intensities; multi-asset price impact from distressed selling; regime-switching Levy-driven diffusion-based price dynamics. Initial models for those systems are very complicated, which is why the author's approach helps to simplified their study. The book uses a very general approach for modeling of those systems via abstract inhomogeneous random evolutions in Banach spaces. To simplify their investigation, it applies the first averaging principle (long-run stability property or law of large numbers [LLN]) to get deterministic function on the long run. To eliminate the rate of convergence in the LLN, it uses secondly the functional central limit theorem (FCLT) such that the associated cumulative process, centered around that deterministic function and suitably scaled in time, may be approximated by an orthogonal martingale measure, in general; and by standard Brownian motion, in particular, if the scale parameter increases. Thus, this approach allows the author to easily link, for example, microscopic activities with macroscopic ones in HFT, connecting the parameters driving the HFT with the daily volatilities. This method also helps to easily calculate ruin and ultimate ruin probabilities for the risk process. All results in the book are new and original, and can be easily implemented in practice.
This book extends the theory and applications of random evolutions to semi-Markov random media in discrete time, essentially focusing on semi-Markov chains as switching or driving processes. After giving the definitions of discrete-time semi-Markov chains and random evolutions, it presents the asymptotic theory in a functional setting, including weak convergence results in the series scheme, and their extensions in some additional directions, including reduced random media, controlled processes, and optimal stopping. Finally, applications of discrete-time semi-Markov random evolutions in epidemiology and financial mathematics are discussed. This book will be of interest to researchers and graduate students in applied mathematics and statistics, and other disciplines, including engineering, epidemiology, finance and economics, who are concerned with stochastic models of systems.
|
You may like...
|