Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Several important problems arising in Physics, Di?erential Geometry and other n topics lead to consider semilinear variational elliptic equations on R and a great deal of work has been devoted to their study. From the mathematical point of view, the main interest relies on the fact that the tools of Nonlinear Functional Analysis, based on compactness arguments, in general cannot be used, at least in a straightforward way, and some new techniques have to be developed. n On the other hand, there are several elliptic problems on R which are p- turbative in nature. In some cases there is a natural perturbation parameter, like inthe bifurcationfromthe essentialspectrum orinsingularlyperturbed equations or in the study of semiclassical standing waves for NLS. In some other circ- stances, one studies perturbations either because this is the ?rst step to obtain global results or else because it often provides a correct perspective for further global studies. For these perturbation problems a speci?c approach,that takes advantage of such a perturbative setting, seems the most appropriate. These abstract tools are provided by perturbation methods in critical point theory. Actually, it turns out that such a framework can be used to handle a large variety of equations, usually considered di?erent in nature. Theaimofthismonographistodiscusstheseabstractmethodstogetherwith their applications to several perturbation problems, whose common feature is to n involve semilinear Elliptic Partial Di?erential Equations on R with a variational structure.
Many problems in science and engineering are described by nonlinear differential equations, which can be notoriously difficult to solve. Through the interplay of topological and variational ideas, methods of nonlinear analysis are able to tackle such fundamental problems. This graduate text explains some of the key techniques in a way that will be appreciated by mathematicians, physicists and engineers. Starting from elementary tools of bifurcation theory and analysis, the authors cover a number of more modern topics from critical point theory to elliptic partial differential equations. A series of Appendices give convenient accounts of a variety of advanced topics that will introduce the reader to areas of current research. The book is amply illustrated and many chapters are rounded off with a set of exercises.
This volume contains the notes of the lectures delivered at the CIME course GeometricAnalysis andPDEsduringtheweekofJune11-162007inCetraro (Cosenza). The school consisted in six courses held by M. Gursky (PDEs in Conformal Geometry), E. Lanconelli (Heat kernels in sub-Riemannian s- tings), A. Malchiodi(Concentration of solutions for some singularly perturbed Neumann problems), G. Tarantello (On some elliptic problems in the study of selfdual Chern-Simons vortices), X. J. Wang (Thek-Hessian Equation)and P. Yang (Minimal Surfaces in CR Geometry). Geometric PDEs are a ?eld of research which is currently very active, as it makes it possible to treat classical problems in geometry and has had a dramatic impact on the comprehension of three- and four-dimensional ma- folds in the last several years. On one hand the geometric structure of these PDEs might cause general di?culties due to the presence of some invariance (translations, dilations, choice of gauge, etc. ), which results in a lack of c- pactness of the functional embeddings for the spaces of functions associated with the problems. On the other hand, a geometric intuition or result might contribute enormously to the search for natural quantities to keep track of, andtoproveregularityoraprioriestimatesonsolutions. Thistwo-foldaspect of the study makes it both challenging and complex, and requires the use of severalre?nedtechniquestoovercomethemajordi?cultiesencountered
This book covers recent advances in several important areas of geometric analysis including extremal eigenvalue problems, mini-max methods in minimal surfaces, CR geometry in dimension three, and the Ricci flow and Ricci limit spaces. An output of the CIME Summer School "Geometric Analysis" held in Cetraro in 2018, it offers a collection of lecture notes prepared by Ailana Fraser (UBC), Andre Neves (Chicago), Peter M. Topping (Warwick), and Paul C. Yang (Princeton). These notes will be a valuable asset for researchers and advanced graduate students in geometric analysis.
|
You may like...
Gene Machine - The Race to Decipher the…
Venki Ramakrishnan
Paperback
(1)
Design and Analysis of DNA Microarray…
Richard M. Simon, Edward L. Korn, …
Hardcover
R2,809
Discovery Miles 28 090
|