0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Hardcover): Andrea Montessori, Giacomo Falcucci Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Hardcover)
Andrea Montessori, Giacomo Falcucci
R1,839 Discovery Miles 18 390 Ships in 10 - 15 working days

Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Paperback): Andrea Montessori, Giacomo Falcucci Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Paperback)
Andrea Montessori, Giacomo Falcucci
R1,388 Discovery Miles 13 880 Ships in 10 - 15 working days

Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
M. Graham Artist' Watercolour Paint…
R484 Discovery Miles 4 840
WTF - Capturing Zuma: A Cartoonist's…
Zapiro Paperback R569 Discovery Miles 5 690
Practical Case Studies in Digitalising…
Paperback R493 Discovery Miles 4 930
Oster Digital Air Fryer Oven Cookbook…
Fiphan Tebans Hardcover R700 Discovery Miles 7 000
An Essay Concerning Human Understanding…
John Locke Paperback R679 Discovery Miles 6 790
Nadiya Bakes - Includes all the…
Nadiya Hussain Hardcover  (2)
R713 R629 Discovery Miles 6 290
Sara Learns about Police Officers
Justin Miller Hardcover R522 R487 Discovery Miles 4 870
The Oxford Handbook of Topic Theory
Danuta Mirka Hardcover R5,009 Discovery Miles 50 090
Mystery of Mrs. Christie
Marie Benedict Hardcover R758 R706 Discovery Miles 7 060
Research Anthology on Physical and…
Information R Management Association Hardcover R11,473 Discovery Miles 114 730

 

Partners