0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Paperback, Softcover reprint of the... Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Paperback, Softcover reprint of the original 1st ed. 2016)
Mongi A. Abidi, Andrei V. Gribok, Joonki Paik
R2,700 Discovery Miles 27 000 Ships in 10 - 15 working days

This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc. Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.

Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Hardcover, 1st ed. 2016): Mongi A. Abidi,... Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Hardcover, 1st ed. 2016)
Mongi A. Abidi, Andrei V. Gribok, Joonki Paik
R4,806 Discovery Miles 48 060 Ships in 10 - 15 working days

This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc. Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
All Dhal'd Up - Every Day, Indian-ish…
Kamini Pather Hardcover R420 R329 Discovery Miles 3 290
Caron My Ylang Eau De Parfum Spray…
R3,519 R2,534 Discovery Miles 25 340
Condere Plus 43'' FHD LED Smart TV
R6,499 R4,109 Discovery Miles 41 090
Loot
Nadine Gordimer Paperback  (2)
R389 R360 Discovery Miles 3 600
Bantex B9343 Large Office Stapler (Full…
R163 Discovery Miles 1 630
Bitty Boomers Star Wars Bluetooth…
R399 R193 Discovery Miles 1 930
Zap! Air Dry Pottery Kit
Kit R250 R227 Discovery Miles 2 270
Sony NEW Playstation Dualshock 4 v2…
 (3)
R1,872 R1,513 Discovery Miles 15 130
Salton S1I260 Perfect Temperature Iron…
R269 R217 Discovery Miles 2 170
Loot
Nadine Gordimer Paperback  (2)
R389 R360 Discovery Miles 3 600

 

Partners