0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Hardcover, 1st ed. 2016): Mongi A. Abidi,... Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Hardcover, 1st ed. 2016)
Mongi A. Abidi, Andrei V. Gribok, Joonki Paik
R4,060 Discovery Miles 40 600 Ships in 10 - 15 working days

This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc. Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.

Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Paperback, Softcover reprint of the... Optimization Techniques in Computer Vision - Ill-Posed Problems and Regularization (Paperback, Softcover reprint of the original 1st ed. 2016)
Mongi A. Abidi, Andrei V. Gribok, Joonki Paik
R2,431 Discovery Miles 24 310 Ships in 18 - 22 working days

This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc. Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Expensive Poverty - Why Aid Fails And…
Greg Mills Paperback R360 R326 Discovery Miles 3 260
Skills in Mathematics - Trigonometry for…
Amit M. Agarwal Paperback R1,449 Discovery Miles 14 490
Cancer Nursing Practice - A Textbook for…
Nora Kearney, Alison Richardson, … Paperback R1,536 Discovery Miles 15 360
Hero and Hero-Worship - Fandom in Modern…
Rahul Chaturvedi, Hariom Singh, … Hardcover R1,404 Discovery Miles 14 040
Vlok's Community Health For Southern…
Marina Clarke Paperback R821 R737 Discovery Miles 7 370
How We Advertised America; The First…
George Creel Paperback R644 Discovery Miles 6 440
Timbre - Paradox, Materialism…
Isabella Van Elferen Hardcover R3,182 Discovery Miles 31 820
At the Sign of the Silver Flagon
Benjamin Leopold Farjeon Paperback R464 Discovery Miles 4 640
Reparative Aesthetics - Witnessing in…
Susan Best Hardcover R3,181 Discovery Miles 31 810
Unawares - a Story of an Old French Town
Frances Mary Peard Paperback R501 Discovery Miles 5 010

 

Partners