Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorny (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapter 3 (existence theory) and to the appendices. It is extremely well organized, and very well written. It is a landmark for researchers in mathematical fluid dynamics, especially those interested in the physical meaning of the equations and statements." Denis Serre (MathSciNet)
This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to focus on various modules of the material, either in part or more fully. Chapters include detailed heuristic arguments providing motivation for technical aspects that are rigorously presented later on in the text; for instance, the existence theory for steady and unsteady Navier-Stokes equations of isentropic compressible flow, and two-by-two systems of Euler equations in one space dimension. These parts are presented in a textbook style with auxiliary material in supporting sections and appendices. The book includes a rich index and extensive bibliography, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of compressible flow, as well as in the book itself.
The goal of this monograph is to develop a mathematical theory of open fluid systems in the framework of continuum thermodynamics. Part I discusses the difference between open and closed fluid systems and introduces the Navier-Stokes-Fourier system as the mathematical model of a fluid in motion that will be used throughout the text. A class of generalized solutions to the Navier-Stokes-Fourier system is considered in Part II in order to show existence of global-in-time solutions for any finite energy initial data, as well as to establish the weak-strong uniqueness principle. Finally, Part III addresses questions of asymptotic compactness and global boundedness of trajectories and briefly considers the statistical theory of turbulence and the validity of the ergodic hypothesis.
Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.
|
You may like...
Labour Relations in South Africa
Dr Hanneli Bendeman, Dr Bronwyn Dworzanowski-Venter
Paperback
|