Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Fundamental biochemical studies of basic brain metabolism focusing on the neuroactive amino acids glutamate and GABA combined with the seminal observation that one of the key enzymes, glutamine synthetase is localized in astroglial cells but not in neurons resulted in the formulation of the term "The Glutamate-Glutamine Cycle." In this cycle glutamate released from neurons is taken up by surrounding astrocytes, amidated by the action of glutamine synthetase to glutamine which can be transferred back to the neurons. The conversion of glutamate to glutamine is like a stealth technology, hiding the glutamate molecule which would be highly toxic to neurons due to its excitotoxic action. This series of reactions require the concerted and precise interaction of a number of enzymes and plasma membrane transporters, and this volume provides in-depth descriptions of these processes. Obviously such a series of complicated reactions may well be prone to malfunction and therefore neurological diseases are likely to be associated with such malfunction of the enzymes and transporters involved in the cycle. These aspects are also discussed in several chapters of the book. A number of leading experts in neuroscience including intermediary metabolism, enzymology and transporter physiology have contributed to this book which provides comprehensive discussions of these different aspects of the functional importance of the glutamate-glutamine cycle coupling homeostasis of glutamatergic, excitatory neurotransmission to basic aspects of brain energy metabolism. This book will be of particular importance for students as well as professionals interested in these fundamental processes involved in brain function and dysfunction.
ATP acts as main energy source and is pivotal for numerous signaling cascades both inside the cells (by fuelling various transport systems and donating phosphate groups) and between the cells (by chemical transmission). Similarly glutamate acts as an important molecule for both intercellular signaling though glutamatergic transmission and cell energetics by contributing to ATP production. In this collection of chapters, written by the leading experts in the field of cell metabolism and energetics, intracellular signaling and neurotransmission we covered various aspects of the interfacing between these two fundamental molecules. This book will be particularly useful for researchers, students, physicians and psychotherapists working in the field of neurobiology, neurology and psychiatry.
This ambitious compendium provides an extensive overview on the "supporting cells" of the vertebrate central nervous system, these being glial cells which far outnumber neurons but are much less understood. Covering multiple aspects of this family of transporters-- from structural properties, to their involvement in signaling and gene expression regulation, this volume presents the most recent research on the roles of glial amino acid transporters as key molecules of brain metabolism and signaling.
A powerful collection of readily reproducible cutting-edge techniques for characterizing the ligand or substrate binding of neurotransmitter receptors and transporters. The procedures cover interdisciplinary interactions for monoamine transporters, amino acid transporters, ionotropic receptors, metabotropic glutamate receptors, GABA receptors, and other G protein-coupled receptors. By illuminating how neurons in the central nervous communicate with other, these techniques can lead to the development of novel therapeutic strategies for neurological diseases.
No further information has been provided for this title.
This book aims to provide a state-of-the-art summary of what is currently known about brain glycogen metabolism, detailing the recent advances in our understanding of why glycogen is so critical for normal brain function. The role of glycogen in cellular neurophysiology remains largely unclear and its specific contribution to the energy demand of brain cells is still elusive.Glycogen is the sole cerebral glucose reserve and is emerging as a fundamental component of brain energy metabolism. Pharmacological or genetic manipulation of glycogen metabolism in the brain impairs memory formation and increases susceptibility to epileptic seizures and cortical spreading depression. Glycogen is also directly implicated in abnormal neuronal excitability and mental retardation that characterize brain disorders like Lafora disease and Pompe disease.
Fundamental biochemical studies of basic brain metabolism focusing on the neuroactive amino acids glutamate and GABA combined with the seminal observation that one of the key enzymes, glutamine synthetase is localized in astroglial cells but not in neurons resulted in the formulation of the term "The Glutamate-Glutamine Cycle." In this cycle glutamate released from neurons is taken up by surrounding astrocytes, amidated by the action of glutamine synthetase to glutamine which can be transferred back to the neurons. The conversion of glutamate to glutamine is like a stealth technology, hiding the glutamate molecule which would be highly toxic to neurons due to its excitotoxic action. This series of reactions require the concerted and precise interaction of a number of enzymes and plasma membrane transporters, and this volume provides in-depth descriptions of these processes. Obviously such a series of complicated reactions may well be prone to malfunction and therefore neurological diseases are likely to be associated with such malfunction of the enzymes and transporters involved in the cycle. These aspects are also discussed in several chapters of the book. A number of leading experts in neuroscience including intermediary metabolism, enzymology and transporter physiology have contributed to this book which provides comprehensive discussions of these different aspects of the functional importance of the glutamate-glutamine cycle coupling homeostasis of glutamatergic, excitatory neurotransmission to basic aspects of brain energy metabolism. This book will be of particular importance for students as well as professionals interested in these fundamental processes involved in brain function and dysfunction.
ATP acts as main energy source and is pivotal for numerous signaling cascades both inside the cells (by fuelling various transport systems and donating phosphate groups) and between the cells (by chemical transmission). Similarly glutamate acts as an important molecule for both intercellular signaling though glutamatergic transmission and cell energetics by contributing to ATP production. In this collection of chapters, written by the leading experts in the field of cell metabolism and energetics, intracellular signaling and neurotransmission we covered various aspects of the interfacing between these two fundamental molecules. This book will be particularly useful for researchers, students, physicians and psychotherapists working in the field of neurobiology, neurology and psychiatry.
The present outline of astrocytic metabolic pathways involved in glucose and amino acid metabolism provides detailed information about the enzymatic pathways involved, as well as a description of the basic properties of the enzymes including regulatory mechanisms. Hence, the glycolytic pathway and glycogen metabolism are outlined, followed by a detailed account of pyruvate oxidation and its role as a substrate for the tricarboxylic acid (TCA) cycle. Moreover, a detailed description of the main enzymes involved in glutamate metabolism is provided and the role of the glutamate-glutamine cycle is explained. Since this text is primarily covering astrocytic metabolism, an emphasis has been placed on a discussion of the significance of the astrocyte specific enzymes pyruvate carboxylase and glutamine synthetase, which enable these cells to perform a net synthesis of glutamine, the precursor for synthesis of glutamate and -aminobutyrate (GABA), the main neurotransmitters of the brain. With this, we have underlined the fundamental importance of astrocytic metabolism for neuronal function with a particular emphasis on the fact that, without continuous support from the astrocytic partners in synaptic function, glutamatergic and GABAergic neurotransmission would not be possible. It is thought provoking that these neurotransmission processes, which account for the vast majority of synaptic activity in the brain, have been made totally dependent on astrocytic metabolic support, particularly with regard to replenishment of the respective neurotransmitters.
|
You may like...
|