Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Conservation and balance laws on networks have been the subject of much research interest given their wide range of applications to real-world processes, particularly traffic flow. This open access monograph is the first to investigate different types of control problems for conservation laws that arise in the modeling of vehicular traffic. Four types of control problems are discussed - boundary, decentralized, distributed, and Lagrangian control - corresponding to, respectively, entrance points and tolls, traffic signals at junctions, variable speed limits, and the use of autonomy and communication. Because conservation laws are strictly connected to Hamilton-Jacobi equations, control of the latter is also considered. An appendix reviewing the general theory of initial-boundary value problems for balance laws is included, as well as an appendix illustrating the main concepts in the theory of conservation laws on networks.
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
This monograph is the first devoted to optimal syntheses in control theory and focuses on minimum time on 2-D manifolds. The first chapter outlines book results and examples of applicability. Then a quick introduction to geometric methods in control theory is provided. The following chapters contain a deep analysis of single input systems on 2-D manifolds including classifications of optimal syntheses and feedbacks, their singularities, extremals projection and minimum time singularities. Various extensions and applications are also illustrated. The volume is suitable for a graduate level one-semester course on optimal syntheses theory for mathematicians or engineers with a solid mathematical background.
Conservation and balance laws on networks have been the subject of much research interest given their wide range of applications to real-world processes, particularly traffic flow. This open access monograph is the first to investigate different types of control problems for conservation laws that arise in the modeling of vehicular traffic. Four types of control problems are discussed - boundary, decentralized, distributed, and Lagrangian control - corresponding to, respectively, entrance points and tolls, traffic signals at junctions, variable speed limits, and the use of autonomy and communication. Because conservation laws are strictly connected to Hamilton-Jacobi equations, control of the latter is also considered. An appendix reviewing the general theory of initial-boundary value problems for balance laws is included, as well as an appendix illustrating the main concepts in the theory of conservation laws on networks.
In recent years flows in networks have attracted the interest of many researchers from different areas, e.g. applied mathematicians, engineers, physicists, economists. The main reason for this ubiquity is the wide and diverse range of applications, such as vehicular traffic, supply chains, blood flow, irrigation channels, data networks and others. This book presents an extensive set of notes by world leaders on the main mathematical techniques used to address such problems, together with investigations into specific applications. The main focus is on partial differential equations in networks, but ordinary differential equations and optimal transport are also included. Moreover, the modeling is completed by analysis, numerics, control and optimization of flows in networks. The book will be a valuable resource for every researcher or student interested in the subject.
|
You may like...
|