![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing shows how to use a collection of mathematical techniques to solve important problems in applied mathematics and computer science areas. The book discusses fundamental tools in analytical geometry and linear algebra. It covers a wide range of topics, from matrix decomposition to curvature analysis and principal component analysis to dimensionality reduction. Written by a team of highly respected professors, the book can be used in a one-semester, intermediate-level course in computer science. It takes a practical problem-solving approach, avoiding detailed proofs and analysis. Suitable for readers without a deep academic background in mathematics, the text explains how to solve non-trivial geometric problems. It quickly gets readers up to speed on a variety of tools employed in visual computing and applied geometry.
A First Course in Numerical Methods is designed for students and researchers who seek practical knowledge of modern techniques in scientific computing. Avoiding encyclopedic and heavily theoretical exposition, the book provides an in-depth treatment of fundamental issues and methods, the reasons behind the success and failure of numerical software, and fresh and easy-to-follow approaches and techniques. The authors focus on current methods, issues, and software while providing a comprehensive theoretical foundation, enabling those who need to apply the techniques to successfully design solutions to nonstandard problems. The book also illustrates algorithms using the programming environment of MATLAB(R), with the expectation that the reader will gradually become proficient in it while learning the material covered in the book. A variety of exercises are provided within each chapter along with review questions aimed at self-testing. The book takes an algorithmic approach, focusing on techniques that have a high level of applicability to engineering, computer science, and industrial mathematics.
The text presents and discusses some of the most influential papers in Matrix Computation authored by Gene H. Golub, one of the founding fathers of the field. The collection of 21 papers is divided into five main areas: iterative methods for linear systems, solution of least squares problems, matrix factorizations and applications, orthogonal polynomials and quadrature, and eigenvalue problems and commentaries for each area are provided by leading experts: Anne Greenbaum, Ake Bjorck, Nicholas Higham, Walter Gautschi, and G. W. (Pete) Stewart. Comments on each paper are also provided by the original authors, providing the reader with historical information on how the paper came to be written and under what circumstances the collaboration was undertaken. Including a brief biography and facsimiles of the original papers, this text will be of great interest to students and researchers in numerical analysis and scientific computation.
|
![]() ![]() You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|