0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (5)
  • R5,000 - R10,000 (4)
  • -
Status
Brand

Showing 1 - 9 of 9 matches in All Departments

Computational Intelligence in Optimization - Applications and Implementations (Hardcover, 2010 Ed.): Yoel Tenne, Chi-Keong Goh Computational Intelligence in Optimization - Applications and Implementations (Hardcover, 2010 Ed.)
Yoel Tenne, Chi-Keong Goh
R6,733 Discovery Miles 67 330 Ships in 10 - 15 working days

Optimization is an integral part to science and engineering. Most real-world applications involve complex optimization processes, which are di?cult to solve without advanced computational tools. With the increasing challenges of ful?lling optimization goals of current applications there is a strong drive to advancethe developmentofe?cientoptimizers. The challengesintroduced by emerging problems include: * objective functions which are prohibitively expensive to evaluate, so ty- callysoonlyasmallnumber ofobjectivefunctionevaluationscanbemade during the entire search, * objective functions which are highly multimodal or discontinuous, and * non-stationary problems which may change in time (dynamic). Classical optimizers may perform poorly or even may fail to produce any improvement over the starting vector in the face of such challenges. This has motivated researchers to explore the use computational intelligence (CI) to augment classical methods in tackling such challenging problems. Such methods include population-based search methods such as: a) evolutionary algorithms and particle swarm optimization and b) non-linear mapping and knowledgeembedding approachessuchasarti?cialneuralnetworksandfuzzy logic, to name a few. Such approaches have been shown to perform well in challenging settings. Speci?cally, CI are powerful tools which o?er several potential bene?ts such as: a) robustness (impose little or no requirements on the objective function) b) versatility (handle highly non-linear mappings) c) self-adaptionto improveperformance and d) operationin parallel(making it easy to decompose complex tasks). However, the successful application of CI methods to real-world problems is not straightforward and requires both expert knowledge and trial-and-error experiments.

Evolutionary Multi-objective Optimization in Uncertain Environments - Issues and Algorithms (Hardcover, 2009 ed.): Chi-Keong... Evolutionary Multi-objective Optimization in Uncertain Environments - Issues and Algorithms (Hardcover, 2009 ed.)
Chi-Keong Goh, Kay Chen Tan
R3,189 Discovery Miles 31 890 Ships in 10 - 15 working days

Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined.

The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.

Multi-Objective Memetic Algorithms (Hardcover, 2009 ed.): Chi-Keong Goh, Yew Soon Ong, Kay Chen Tan Multi-Objective Memetic Algorithms (Hardcover, 2009 ed.)
Chi-Keong Goh, Yew Soon Ong, Kay Chen Tan
R5,997 R4,762 Discovery Miles 47 620 Save R1,235 (21%) Ships in 12 - 17 working days

The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design.

This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.

Computational Intelligence in Expensive Optimization Problems (Hardcover, 2010 ed.): Yoel Tenne, Chi-Keong Goh Computational Intelligence in Expensive Optimization Problems (Hardcover, 2010 ed.)
Yoel Tenne, Chi-Keong Goh
R9,167 R8,205 Discovery Miles 82 050 Save R962 (10%) Ships in 12 - 17 working days

In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc.

Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporation of expert systems and human-system interface, single and multiobjective algorithms, data mining and statistical analysis, analysis of real-world cases (such as multidisciplinary design optimization).

The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems.

Computational Intelligence in Optimization - Applications and Implementations (Paperback, 2010 ed.): Yoel Tenne, Chi-Keong Goh Computational Intelligence in Optimization - Applications and Implementations (Paperback, 2010 ed.)
Yoel Tenne, Chi-Keong Goh
R6,685 Discovery Miles 66 850 Ships in 10 - 15 working days

Optimization is an integral part to science and engineering. Most real-world applications involve complex optimization processes, which are di?cult to solve without advanced computational tools. With the increasing challenges of ful?lling optimization goals of current applications there is a strong drive to advancethe developmentofe?cientoptimizers. The challengesintroduced by emerging problems include: * objective functions which are prohibitively expensive to evaluate, so ty- callysoonlyasmallnumber ofobjectivefunctionevaluationscanbemade during the entire search, * objective functions which are highly multimodal or discontinuous, and * non-stationary problems which may change in time (dynamic). Classical optimizers may perform poorly or even may fail to produce any improvement over the starting vector in the face of such challenges. This has motivated researchers to explore the use computational intelligence (CI) to augment classical methods in tackling such challenging problems. Such methods include population-based search methods such as: a) evolutionary algorithms and particle swarm optimization and b) non-linear mapping and knowledgeembedding approachessuchasarti?cialneuralnetworksandfuzzy logic, to name a few. Such approaches have been shown to perform well in challenging settings. Speci?cally, CI are powerful tools which o?er several potential bene?ts such as: a) robustness (impose little or no requirements on the objective function) b) versatility (handle highly non-linear mappings) c) self-adaptionto improveperformance and d) operationin parallel(making it easy to decompose complex tasks). However, the successful application of CI methods to real-world problems is not straightforward and requires both expert knowledge and trial-and-error experiments.

Computational Intelligence in Expensive Optimization Problems (Paperback, 2010 ed.): Yoel Tenne, Chi-Keong Goh Computational Intelligence in Expensive Optimization Problems (Paperback, 2010 ed.)
Yoel Tenne, Chi-Keong Goh
R8,856 Discovery Miles 88 560 Ships in 10 - 15 working days

In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc.

Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporation of expert systems and human-system interface, single and multiobjective algorithms, data mining and statistical analysis, analysis of real-world cases (such as multidisciplinary design optimization).

The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems.

Applications of Evolutionary Computation - EvoApplications 2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and... Applications of Evolutionary Computation - EvoApplications 2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Istanbul, Turkey, April 7-9, 2010, Proceedings, Part I (Paperback, 1st Edition. 2nd Printing. 3rd Printing.)
Cecilia Di Chio, Stefano Cagnoni, Carlos Cotta, Marc Ebner, Aniko Ekart, …
R3,150 Discovery Miles 31 500 Ships in 10 - 15 working days

Evolutionary Computation (EC) techniques are e?cient, nature-inspired me- ods based on the principles of natural evolution and genetics. Due to their - ciency and simple underlying principles, these methods can be used for a diverse rangeofactivitiesincludingproblemsolving,optimization,machinelearningand pattern recognition. A large and continuously increasing number of researchers and professionals make use of EC techniques in various application domains. This volume presents a careful selection of relevant EC examples combined with a thorough examination of the techniques used in EC. The papers in the volume illustrate the current state of the art in the application of EC and should help and inspire researchers and professionals to develop e?cient EC methods for design and problem solving. All papers in this book were presented during EvoApplications 2010, which included a range of events on application-oriented aspects of EC. Since 1998, EvoApplications - formerly known as EvoWorkshops- has provided a unique opportunity for EC researchers to meet and discuss application aspects of EC and has been an important link between EC research and its application in a variety of domains. During these 12 years, new events have arisen, some have disappeared,whileothershavematuredtobecomeconferencesoftheirown,such as EuroGP in 2000, EvoCOP in 2004, and EvoBIO in 2007. And from this year, EvoApplications has become a conference as well.

Multi-Objective Memetic Algorithms (Paperback, Softcover reprint of hardcover 1st ed. 2009): Chi-Keong Goh, Yew Soon Ong, Kay... Multi-Objective Memetic Algorithms (Paperback, Softcover reprint of hardcover 1st ed. 2009)
Chi-Keong Goh, Yew Soon Ong, Kay Chen Tan
R4,610 Discovery Miles 46 100 Ships in 10 - 15 working days

The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.

Evolutionary Multi-objective Optimization in Uncertain Environments - Issues and Algorithms (Paperback, Softcover reprint of... Evolutionary Multi-objective Optimization in Uncertain Environments - Issues and Algorithms (Paperback, Softcover reprint of hardcover 1st ed. 2009)
Chi-Keong Goh, Kay Chen Tan
R3,020 Discovery Miles 30 200 Ships in 10 - 15 working days

Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined. The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Overcomer
Chris Fabry Paperback R400 R292 Discovery Miles 2 920
Sapiens - A Brief History Of Humankind
Yuval Noah Harari Paperback  (4)
R345 R318 Discovery Miles 3 180
Small Miracles
Anne Booth Paperback R423 Discovery Miles 4 230
The Gambling Animal - Humanity's…
Glenn Harrison, Don Ross Paperback R350 R312 Discovery Miles 3 120
Tartessos and the Phoenicians in Iberia
Sebastian Celestino, Carolina Lopez-Ruiz Hardcover R5,448 Discovery Miles 54 480
The Party
Elizabeth Day Paperback  (1)
R323 R263 Discovery Miles 2 630
Diepkloof - Reflections Of Diepkloof…
Alan Paton Paperback R124 Discovery Miles 1 240
The Idea of Order - The Circular…
Richard Bradley Hardcover R5,543 Discovery Miles 55 430
First People - The Lost History Of The…
Andrew Smith Paperback  (1)
R265 R237 Discovery Miles 2 370
The Man Who Shook Mountains - In The…
Lesley Mofokeng Paperback R285 R255 Discovery Miles 2 550

 

Partners