Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This monograph presents recursion theory from a generalized point of view centered on the computational aspects of definability. A major theme is the study of the structures of degrees arising from two key notions of reducibility, the Turing degrees and the hyperdegrees, using techniques and ideas from recursion theory, hyperarithmetic theory, and descriptive set theory. The emphasis is on the interplay between recursion theory and set theory, anchored on the notion of definability. The monograph covers a number of fundamental results in hyperarithmetic theory as well as some recent results on the structure theory of Turing and hyperdegrees. It also features a chapter on the applications of these investigations to higher randomness.
This volume comprises a collection of twenty written versions of invited as well as contributed papers presented at the conference held from 20-24 May 1996 in Beijing, China. It covers many areas of logic and the foundations of mathematics, as well as computer science. Also included is an article by M. Yasugi on the Asian Logic Conference which first appeared in Japanese, to provide a glimpse into the history and development of the series.
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics. The medal is awarded to the best mathematicians who are 40 or younger, every four years.A list of Fields Medallists and their contributions provides a bird's-eye view of the major developments in mathematics over the past 80 years. It highlights the areas in which, at various times, the greatest progress has been made.The third edition of Fields Medallists' Lectures features additional contributions from: John W Milnor (1962), Enrico Bombieri (1974), Gerd Faltings (1986), Andrei Okounkov (2006), Terence Tao (2006), Cedric Villani (2010), Elon Lindenstrauss (2010), Ngo Bao Chau (2010), Stanislav Smirnov (2010).
Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to one field - that of mathematics. The medal is awarded to the best mathematicians who are 40 or younger, every four years.A list of Fields Medallists and their contributions provides a bird's-eye view of the major developments in mathematics over the past 80 years. It highlights the areas in which, at various times, the greatest progress has been made.The third edition of Fields Medallists' Lectures features additional contributions from: John W Milnor (1962), Enrico Bombieri (1974), Gerd Faltings (1986), Andrei Okounkov (2006), Terence Tao (2006), Cedric Villani (2010), Elon Lindenstrauss (2010), Ngo Bao Chau (2010), Stanislav Smirnov (2010).
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2010 and 2011 Asian Initiative for Infinity Logic Summer Schools. The major topics covered set theory and recursion theory, with particular emphasis on forcing, inner model theory and Turing degrees, offering a wide overview of ideas and techniques introduced in contemporary research in the field of mathematical logic.
This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach-Steinhaus Boundedness Principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions rather than on the relationship between different forcing axioms or their consistency strengths.
This volume is based on the talks given at the Workshop on Infinity and Truth held at the Institute for Mathematical Sciences, National University of Singapore, from 25 to 29 July 2011. The chapters cover topics in mathematical and philosophical logic that examine various aspects of the foundations of mathematics. The theme of the volume focuses on two basic foundational questions: (i) What is the nature of mathematical truth and how does one resolve questions that are formally unsolvable within the Zermelo-Fraenkel Set Theory with the Axiom of Choice, and (ii) Do the discoveries in mathematics provide evidence favoring one philosophical view over others? These issues are discussed from the vantage point of recent progress in foundational studies.The final chapter features questions proposed by the participants of the Workshop that will drive foundational research. The wide range of topics covered here will be of interest to students, researchers and mathematicians concerned with issues in the foundations of mathematics.
|
You may like...
Miss Peregrine's Home for Peculiar…
Eva Green, Asa Butterfield, …
Blu-ray disc
(1)
R29 Discovery Miles 290
|