Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The mathematical theory of networks and systems has a long, and rich history, with antecedents in circuit synthesis and the analysis, design and synthesis of actuators, sensors and active elements in both electrical and mechanical systems. Fundamental paradigms such as the state-space real ization of an input/output system, or the use of feedback to prescribe the behavior of a closed-loop system have proved to be as resilient to change as were the practitioners who used them. This volume celebrates the resiliency to change of the fundamental con cepts underlying the mathematical theory of networks and systems. The articles presented here are among those presented as plenary addresses, invited addresses and minisymposia presented at the 12th International Symposium on the Mathematical Theory of Networks and Systems, held in St. Louis, Missouri from June 24 - 28, 1996. Incorporating models and methods drawn from biology, computing, materials science and math ematics, these articles have been written by leading researchers who are on the vanguard of the development of systems, control and estimation for the next century, as evidenced by the application of new methodologies in distributed parameter systems, linear nonlinear systems and stochastic sys tems for solving problems in areas such as aircraft design, circuit simulation, imaging, speech synthesis and visionics."
The mathematical theory of networks and systems has a long, and rich history, with antecedents in circuit synthesis and the analysis, design and synthesis of actuators, sensors and active elements in both electrical and mechanical systems. Fundamental paradigms such as the state-space real ization of an input/output system, or the use of feedback to prescribe the behavior of a closed-loop system have proved to be as resilient to change as were the practitioners who used them. This volume celebrates the resiliency to change of the fundamental con cepts underlying the mathematical theory of networks and systems. The articles presented here are among those presented as plenary addresses, invited addresses and minisymposia presented at the 12th International Symposium on the Mathematical Theory of Networks and Systems, held in St. Louis, Missouri from June 24 - 28, 1996. Incorporating models and methods drawn from biology, computing, materials science and math ematics, these articles have been written by leading researchers who are on the vanguard of the development of systems, control and estimation for the next century, as evidenced by the application of new methodologies in distributed parameter systems, linear nonlinear systems and stochastic sys tems for solving problems in areas such as aircraft design, circuit simulation, imaging, speech synthesis and visionics."
This volume is the Proceedings of the symposium held at the University of Wyoming in August, 1985, to honor Gail Young on his seventieth birthday (which actually took place on October 3, 1985) and on the occasion of his retirement. Nothing can seem more natural to a mathematician in this country than to honor Gail Young. Gail embodies all the qualities that a mathematician should possess. He is an active and effective research mathematician, having written over sixty pa pers in topology, n-dimensional analysis, complex variables, and "miscellanea." He is an outstanding expositor, as his fine book Topology, written with J. G. Hocking (Addison Wesley, 1961), amply demonstrates. He has a superlative record in public office of outstanding, unstinting service to the mathematical community and to the cause of education. But what makes Gail unique and special is that throughout all aspects of his distinguished career, he has emphasized human values in everything he has done. In touching the lives of so many of us, he has advanced the entire profession. Deservedly, he has innumerable friends in the mathematical community, the academic community, and beyond."
Papers in this collection partly represent the set of talks that were presented at Texas Tech University on the occasion of Daya 's memorial workshop in the year 2007. Daya had a varied interest in the field of Dynamics and Control Theory and the papers bring out the essence of his involvement in these activities. He also had a large number of collaborators and this collection represent a good fraction of them. The papers included here cover his interest in control theory. Also included are papers from application areas that we believe are of strong interest to him.
This book acquaints engineers with the basic concepts and terminology of modern global differential geometry. It introduces the Lie theory of differential equations and examines the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, and vector fields. 1990 edition.
Generally, classical polynomial splines tend to exhibit unwanted undulations. In this work, we discuss a technique, based on control principles, for eliminating these undulations and increasing the smoothness properties of the spline interpolants. We give a generalization of the classical polynomial splines and show that this generalization is, in fact, a family of splines that covers the broad spectrum of polynomial, trigonometric and exponential splines. A particular element in this family is determined by the appropriate control data. It is shown that this technique is easy to implement. Several numerical and curve-fitting examples are given to illustrate the advantages of this technique over the classical approach. Finally, we discuss the convergence properties of the interpolant.
|
You may like...
|