![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: * Dunford decomposition, * tensor and exterior calculus, polynomial identities, * regularity of eigenvalues for complex matrices, * functional calculus and the Dunford-Taylor formula, * numerical range, * Weyl's and von Neumann's inequalities, and * Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the Ecole Normale Superieure de Lyon.
This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.
Authored by leading scholars, this comprehensive, self-contained
text presents a view of the state of the art in multi-dimensional
hyperbolic partial differential equations, with a particular
emphasis on problems in which modern tools of analysis have proved
useful. Ordered in sections of gradually increasing degrees of
difficulty, the text first covers linear Cauchy problems and linear
initial boundary value problems, before moving on to nonlinear
problems, including shock waves. The book finishes with a
discussion of the application of hyperbolic PDEs to gas dynamics,
culminating with the shock wave analysis for real fluids.
This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.
The study of phase transitions is one of the fundamental problems of physics. The goal of this seminar was to understand better the spectacular progress made recently in constructing continuum models. Concentrating on a few examples such as the microstructure of crystals, defects in liquid crystals and liquid-vapor interfaces, several key points are described, for example the structure and evolution of the interfaces, regularization via interfacial energy, and equilibrium theories. The mathematical treatment of these questions involves large-oscillation theories (Young's measures, compensated compactness), spectral theory, admissibility of shock waves, long-time behavior of dynamical systems, high-order perturbations, group actions, solitons, and others.
This volume includes four lecture courses by Bressan, Serre, Zumbrun and Williams and a Tutorial by Bressan on the Center Manifold Theorem. Bressan introduces the vanishing viscosity approach and clearly explains the building blocks of the theory. Serre focuses on existence and stability for discrete shock profiles. The lectures by Williams and Zumbrun deal with the stability of multidimensional fronts.
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Systems of conservation laws arise naturally in physics and chemistry. Continuing where the previous volume left off, the author considers the maximum principle from the viewpoints of both viscous approximation and numerical schemes. Convergence is studied through compensated compactness. The author applies this tool to the description of large amplitude wave propagation. Small waves are studied through geometrical optics. Special structures are presented in chapters on rich and Temple systems. Finally, Serre explains why the initial-boundary value problem is far from trivial, with descriptions of the Kreiss-Lopatinski condition for well-posedness, with applications to shock wave stability, and certain problems in boundary layer theory. Throughout the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations.
Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations.
|
![]() ![]() You may like...
|