Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.
This book provides a guide to Static Random Access Memory (SRAM) bitcell design and analysis to meet the nano-regime challenges for CMOS devices and emerging devices, such as Tunnel FETs. Since process variability is an ongoing challenge in large memory arrays, this book highlights the most popular SRAM bitcell topologies (benchmark circuits) that mitigate variability, along with exhaustive analysis. Experimental simulation setups are also included, which cover nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis. Emphasis is placed throughout the book on the various trade-offs for achieving a best SRAM bitcell design.Provides a complete and concise introduction to SRAM bitcell design and analysis; Offers techniques to face nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis;Includes simulation set-ups for extracting different design metrics for CMOS technology and emerging devices;Emphasizes different trade-offs for achieving the best possible SRAM bitcell design.
Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach presents recent computer-aided design (CAD) ideas that address memory management tasks, particularly the optimization of energy consumption in the memory subsystem. It explains how to efficiently implement CAD solutions, including theoretical methods and novel algorithms. The book covers various energy-aware design techniques, including data-dependence analysis techniques, memory size estimation methods, extensions of mapping approaches, and memory banking approaches. It shows how these techniques are used to evaluate the data storage of an application, reduce dynamic and static energy consumption, design energy-efficient address generation units, and much more. Providing an algebraic framework for memory management tasks, this book illustrates how to optimize energy consumption in memory subsystems using CAD solutions. The algorithmic style of the text should help electronic design automation (EDA) researchers and tool developers create prototype software tools for system-level exploration, with the goal to ultimately obtain an optimized architectural solution of the memory subsystem.
This book provides a guide to Static Random Access Memory (SRAM) bitcell design and analysis to meet the nano-regime challenges for CMOS devices and emerging devices, such as Tunnel FETs. Since process variability is an ongoing challenge in large memory arrays, this book highlights the most popular SRAM bitcell topologies (benchmark circuits) that mitigate variability, along with exhaustive analysis. Experimental simulation setups are also included, which cover nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis. Emphasis is placed throughout the book on the various trade-offs for achieving a best SRAM bitcell design. Provides a complete and concise introduction to SRAM bitcell design and analysis; Offers techniques to face nano-regime challenges such as process variation, leakage and NBTI for SRAM design and analysis; Includes simulation set-ups for extracting different design metrics for CMOS technology and emerging devices; Emphasizes different trade-offs for achieving the best possible SRAM bitcell design.
Improve design efficiency and reduce costs with this practical guide to formal and simulation-based functional verification. Giving you a theoretical and practical understanding of the key issues involved, expert authors including Wayne Wolf and Dan Gajski explain both formal techniques (model checking, equivalence checking) and simulation-based techniques (coverage metrics, test generation). You get insights into practical issues including hardware verification languages (HVLs) and system-level debugging. The foundations of formal and simulation-based techniques are covered too, as are more recent research advances including transaction-level modeling and assertion-based verification, plus the theoretical underpinnings of verification, including the use of decision diagrams and Boolean satisfiability (SAT).
This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.
Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach presents recent computer-aided design (CAD) ideas that address memory management tasks, particularly the optimization of energy consumption in the memory subsystem. It explains how to efficiently implement CAD solutions, including theoretical methods and novel algorithms. The book covers various energy-aware design techniques, including data-dependence analysis techniques, memory size estimation methods, extensions of mapping approaches, and memory banking approaches. It shows how these techniques are used to evaluate the data storage of an application, reduce dynamic and static energy consumption, design energy-efficient address generation units, and much more. Providing an algebraic framework for memory management tasks, this book illustrates how to optimize energy consumption in memory subsystems using CAD solutions. The algorithmic style of the text should help electronic design automation (EDA) researchers and tool developers create prototype software tools for system-level exploration, with the goal to ultimately obtain an optimized architectural solution of the memory subsystem.
|
You may like...
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
|