![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This book contains the lectures given at the workshop "Dynamo and dynamics, a mathematical challenge" held in Cargese from August 21 to 26, 2000. The workshop differed from most previous conferences on the dynamo effect in two important respects. First, it was at this international conference that the experimental observation of homogeneous fluid dynamos was first reported. Second, the conference gathered scientists from very different fields, thus showing that thepynamo problem has become an interdisciplinary subject involving not only astrophysicists and geophysicists, but also scientists working in dynamical systems theory, hydrodynamics, and numerical simulation, as well as several groups in experimental physics. This book thus reports important results on various dynamo studies in these different contexts: - Decades after the discovery of the first analytic examples of laminar fluid dynamos, the self-generation of a magnetic field by a flow ofliquid sodium has been reported by the Karlsruhe and Riga groups. Although there were no doubts concerning the self generation by the laminar Roberts-type or Ponomarenko-type flows that were used, these experiments have raised interesting questions about the influence of the turbulent fluctuations on the dynamo threshold and on the saturation level of the magnetic field.
The financial results of any manufacturing company can be dramatically impacted by the repetitive decisions required to control a complex production network be it a network of machines in a factory; a network of factories in a company; or a network of companies in a supply chain. Decision Policies for Production Networks presents recent convergent research on developing policies for operating production networks including details of practical control and decision techniques which can be applied to improve the effectiveness and economic efficiency of production networks worldwide. Researchers and practitioners come together to explore a wide variety of approaches to a range of topics including:
The financial results of any manufacturing company can be dramatically impacted by the repetitive decisions required to control a complex production network be it a network of machines in a factory; a network of factories in a company; or a network of companies in a supply chain. Decision Policies for Production Networks presents recent convergent research on developing policies for operating production networks including details of practical control and decision techniques which can be applied to improve the effectiveness and economic efficiency of production networks worldwide. Researchers and practitioners come together to explore a wide variety of approaches to a range of topics including:
This book contains the lectures given at the workshop "Dynamo and dynamics, a mathematical challenge" held in Cargese from August 21 to 26, 2000. The workshop differed from most previous conferences on the dynamo effect in two important respects. First, it was at this international conference that the experimental observation of homogeneous fluid dynamos was first reported. Second, the conference gathered scientists from very different fields, thus showing that thepynamo problem has become an interdisciplinary subject involving not only astrophysicists and geophysicists, but also scientists working in dynamical systems theory, hydrodynamics, and numerical simulation, as well as several groups in experimental physics. This book thus reports important results on various dynamo studies in these different contexts: - Decades after the discovery of the first analytic examples of laminar fluid dynamos, the self-generation of a magnetic field by a flow ofliquid sodium has been reported by the Karlsruhe and Riga groups. Although there were no doubts concerning the self generation by the laminar Roberts-type or Ponomarenko-type flows that were used, these experiments have raised interesting questions about the influence of the turbulent fluctuations on the dynamo threshold and on the saturation level of the magnetic field.
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.
This review volume is devoted to a discussion of analogies and differences of complex production systems - natural, as in biological cells, or man-made, as in economic systems or industrial production. Taking this unified look at production is based on two observations: Cells and many biological networks are complex production units that have evolved to solve production problems in a reliable and optimal way in a highly stochastic environment. On the other hand, industrial production is becoming increasingly complex and often hard to predict. As a result, modeling and control of such production networks involve many different spatial and temporal scales and decision policies for many different structures. The common themes of industrial and biological production include evolution and optimization, synchronization and self-organization, robust operation despite high stochasticity, and hierarchical dynamics. The mathematical techniques used come from dynamical systems theory, transport equations, control theory, pattern formation, graph theory, discrete event simulations, stochastic processes, and others. The application areas range from semiconductor production to supply chains, protein networks, slime molds, social networks, and whole economies.
|
![]() ![]() You may like...
Biomedical and Business Applications…
Richard S Segall, Gao Niu
Hardcover
R7,211
Discovery Miles 72 110
Modelling in Natural Sciences - Design…
Tibor Muller, Harmund Muller
Hardcover
R2,973
Discovery Miles 29 730
Explainable Fuzzy Systems - Paving the…
Jose Maria Alonso Moral, Ciro Castiello, …
Hardcover
R4,928
Discovery Miles 49 280
Icle Publications Plc-Powered Data…
Polly Patrick, Angela Peery
Paperback
R758
Discovery Miles 7 580
Dynamic Models of Conflict and…
Dean Hoover, David Kowalewski
Hardcover
R2,216
Discovery Miles 22 160
Geometry and its Applications
Vladimir Rovenski, Pawel Walczak
Hardcover
R4,936
Discovery Miles 49 360
|