Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
From the reviews of the previous editions ..".. The book is a first class textbook and seems to be indispensable for everybody who has to teach combinatorial optimization. It is very helpful for students, teachers, and researchers in this area. The author finds a striking synthesis of nice and interesting mathematical results and practical applications. ... the author pays much attention to the inclusion of well-chosen exercises. The reader does not remain helpless; solutions or at least hints are given in the appendix. Except for some small basic mathematical and algorithmic knowledge the book is self-contained. ..." K.Engel, Mathematical Reviews 2002 The substantial development effort of this text, involving multiple editions and trailing in the context of various workshops, university courses and seminar series, clearly shows through in this new edition with its clear writing, good organisation, comprehensive coverage of essential theory, and well-chosen applications. The proofs of important results and the representation of key algorithms in a Pascal-like notation allow this book to be used in a high-level undergraduate or low-level graduate course on graph theory, combinatorial optimization or computer science algorithms. The well-worked solutions to exercises are a real bonus for self study by students. The book is highly recommended. P .B. Gibbons, Zentralblatt fur Mathematik 2005 Once again, the new edition has been thoroughly revised. In particular, some further material has been added: more on NP-completeness (especially on dominating sets), a section on the Gallai-Edmonds structure theory for matchings, and about a dozen additional exercises as always, with solutions. Moreover, the section on the 1-factor theorem has been completely rewritten: it now presents a short direct proof for the more general Berge-Tutte formula. Several recent research developments are discussed and quite a few references have been added."
When? These are the proceedings of Finite Geometries, the Fourth Isle of Thorns Conference, which took place from Sunday 16 to Friday 21 July, 2000. It was organised by the editors of this volume. The Third Conference in 1990 was published as Advances in Finite Geometries and Designs by Oxford University Press and the Second Conference in 1980 was published as Finite Geometries and Designs by Cambridge University Press. The main speakers were A. R. Calderbank, P. J. Cameron, C. E. Praeger, B. Schmidt, H. Van Maldeghem. There were 64 participants and 42 contributions, all listed at the end of the volume. Conference web site http://www. maths. susx. ac. uk/Staff/JWPH/ Why? This collection of 21 articles describes the latest research and current state of the art in the following inter-linked areas: * combinatorial structures in finite projective and affine spaces, also known as Galois geometries, in which combinatorial objects such as blocking sets, spreads and partial spreads, ovoids, arcs and caps, as well as curves and hypersurfaces, are all of interest; * geometric and algebraic coding theory; * finite groups and incidence geometries, as in polar spaces, gener alized polygons and diagram geometries; * algebraic and geometric design theory, in particular designs which have interesting symmetric properties and difference sets, which play an important role, because of their close connections to both Galois geometry and coding theory.
The explanation of the formal duality of Kerdock and Preparata codes is one of the outstanding results in the field of applied algebra in the last few years. This result is related to the discovery of large sets of quad riphase sequences over Z4 whose correlation properties are better than those of the best binary sequences. Moreover, the correlation properties of sequences are closely related to difference properties of certain sets in (cyclic) groups. It is the purpose of this book to illustrate the connection between these three topics. Most articles grew out of lectures given at the NATO Ad vanced Study Institute on "Difference sets, sequences and their correlation properties." This workshop took place in Bad Windsheim (Germany) in August 1998. The editors thank the NATO Scientific Affairs Division for the generous support of this workshop. Without this support, the present collection of articles would not have been realized."
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
This volume represents the refereed proceedings of the Fifth International Conference on Finite Fields and Applications (F q5) held at the University of Augsburg (Germany) from August 2-6, 1999, and hosted by the Department of Mathematics. The conference continued a series of biennial international conferences on finite fields, following earlier conferences at the University of Nevada at Las Vegas (USA) in August 1991 and August 1993, the University ofGlasgow (Scotland) in July 1995, and the University ofWaterloo (Canada) in August 1997. The Organizing Committee of F q5 comprised Thomas Beth (University ofKarlsruhe), Stephen D. Cohen (University of Glasgow), Dieter Jungnickel (University of Augsburg, Chairman), Alfred Menezes (University of Waterloo), Gary L. Mullen (Pennsylvania State University), Ronald C. Mullin (University of Waterloo), Harald Niederreiter (Austrian Academy of Sciences), and Alexander Pott (University of Magdeburg). The program ofthe conference consisted offour full days and one halfday ofsessions, with 11 invited plenary talks andover80contributedtalks that re- quired three parallel sessions. This documents the steadily increasing interest in finite fields and their applications. Finite fields have an inherently fasci- nating structure and they are important tools in discrete mathematics. Their applications range from combinatorial design theory, finite geometries, and algebraic geometry to coding theory, cryptology, and scientific computing. A particularly fruitful aspect is the interplay between theory and applications which has led to many new perspectives in research on finite fields.
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
This volume represents the refereed proceedings of the Fifth International Conference on Finite Fields and Applications (F q5) held at the University of Augsburg (Germany) from August 2-6, 1999, and hosted by the Department of Mathematics. The conference continued a series of biennial international conferences on finite fields, following earlier conferences at the University of Nevada at Las Vegas (USA) in August 1991 and August 1993, the University ofGlasgow (Scotland) in July 1995, and the University ofWaterloo (Canada) in August 1997. The Organizing Committee of F q5 comprised Thomas Beth (University ofKarlsruhe), Stephen D. Cohen (University of Glasgow), Dieter Jungnickel (University of Augsburg, Chairman), Alfred Menezes (University of Waterloo), Gary L. Mullen (Pennsylvania State University), Ronald C. Mullin (University of Waterloo), Harald Niederreiter (Austrian Academy of Sciences), and Alexander Pott (University of Magdeburg). The program ofthe conference consisted offour full days and one halfday ofsessions, with 11 invited plenary talks andover80contributedtalks that re- quired three parallel sessions. This documents the steadily increasing interest in finite fields and their applications. Finite fields have an inherently fasci- nating structure and they are important tools in discrete mathematics. Their applications range from combinatorial design theory, finite geometries, and algebraic geometry to coding theory, cryptology, and scientific computing. A particularly fruitful aspect is the interplay between theory and applications which has led to many new perspectives in research on finite fields.
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
When? These are the proceedings of Finite Geometries, the Fourth Isle of Thorns Conference, which took place from Sunday 16 to Friday 21 July, 2000. It was organised by the editors of this volume. The Third Conference in 1990 was published as Advances in Finite Geometries and Designs by Oxford University Press and the Second Conference in 1980 was published as Finite Geometries and Designs by Cambridge University Press. The main speakers were A. R. Calderbank, P. J. Cameron, C. E. Praeger, B. Schmidt, H. Van Maldeghem. There were 64 participants and 42 contributions, all listed at the end of the volume. Conference web site http://www. maths. susx. ac. uk/Staff/JWPH/ Why? This collection of 21 articles describes the latest research and current state of the art in the following inter-linked areas: * combinatorial structures in finite projective and affine spaces, also known as Galois geometries, in which combinatorial objects such as blocking sets, spreads and partial spreads, ovoids, arcs and caps, as well as curves and hypersurfaces, are all of interest; * geometric and algebraic coding theory; * finite groups and incidence geometries, as in polar spaces, gener alized polygons and diagram geometries; * algebraic and geometric design theory, in particular designs which have interesting symmetric properties and difference sets, which play an important role, because of their close connections to both Galois geometry and coding theory.
Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed
The explanation of the formal duality of Kerdock and Preparata codes is one of the outstanding results in the field of applied algebra in the last few years. This result is related to the discovery of large sets of quad riphase sequences over Z4 whose correlation properties are better than those of the best binary sequences. Moreover, the correlation properties of sequences are closely related to difference properties of certain sets in (cyclic) groups. It is the purpose of this book to illustrate the connection between these three topics. Most articles grew out of lectures given at the NATO Ad vanced Study Institute on "Difference sets, sequences and their correlation properties." This workshop took place in Bad Windsheim (Germany) in August 1998. The editors thank the NATO Scientific Affairs Division for the generous support of this workshop. Without this support, the present collection of articles would not have been realized."
Ziel des Buches ist eine elementare EinfA1/4hrung in ausgewAhlte Teile der Kombinatorik. Dabei werden zusAtzlich zur Darstellung der Grundlagen in jedem Kapitel exemplarisch einige tiefer liegende Resultate vollstAndig bewiesen. Das Buch will dem interessierten Nichtspezialisten den Reiz der Kombinatorik nahe bringen, ohne eine systematische Theorie zu entwickeln. Zwar wendet es sich ausdrA1/4cklich nicht an den professionellen Kombinatoriker, vermittelt aber dennoch einen angemessenen Eindruck der auftretenden Methoden.
Diskrete und kontinuierliche Methoden der mathematischen Optimierung werden in diesem Lehrbuch integriert behandelt. Nach einer Einfuhrung werden konvexe Mengen (mit einer Anwendung auf notwendige Optimalitatsbedingungen bei Ungleichungsrestriktionen) behandelt, gefolgt von einer genaueren Betrachtung des Spezialfalls von Polyedern und dessen Zusammenhang zum Linearen Programmieren. Eine ausfuhrliche Darstellung des Simplexverfahrens schliesst diesen Teil ab. Danach wird die Konvexitat von Funktionen (inklusive einiger Abschwachungen) untersucht und fur ein grundliches Studium von Optimalitatskriterien sowie der Lagrange-Dualitat verwendet. Schliesslich folgen noch ein Ausblick auf allgemeine Algorithmen sowie ein kurzer Anhang zur affinen Geometrie. In der Neuauflage ist Anordnung und Darstellung des behandelten Stoffs nochmals grundlich im Sinne der aktuellen BA-Studiengange Mathematik, Wirtschaftswissenschaften und Informatik uberarbeitet worden.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|