![]() |
![]() |
Your cart is empty |
||
Showing 1 - 10 of 10 matches in All Departments
This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 - 2009 and the 7th workshop was held in Rimini, Italy, in 2013.
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experimental question. Providing a concise introduction to experimental design theory, Optimal Experimental Design with R: Introduces the philosophy of experimental design Provides an easy process for constructing experimental designs and calculating necessary sample size using R programs Teaches by example using a custom made R program package: OPDOE Consisting of detailed, data-rich examples, this book introduces experimenters to the philosophy of experimentation, experimental design, and data collection. It gives researchers and statisticians guidance in the construction of optimum experimental designs using R programs, including sample size calculations, hypothesis testing, and confidence estimation. A final chapter of in-depth theoretical details is included for interested mathematical statisticians.
Dieses Buch führt in die angewandte Statistik für Agrarwissenschaften ein und unterstützt bei der Forschung in der Pflanzen- und Tierproduktion und im Feldversuchswesen. Es nutzt ausgiebig das frei verfügbare Programmpaket R: Über das gesamte Buch hinweg werden im Rahmen umfangreicher Beispiele passende R-Programmcodes angegeben und erläutert. Die Codes können mit eigenen Daten kombiniert und so zur Planung und Auswertung eigener Versuche verwendet werden. So können etwa Wachstumsfunktionen angepasst, Varianzanalysen berechnet oder optimale Versuchspläne und minimale Stichprobenumfänge gefunden werden und vieles mehr. Eine Installationsbeschreibung für R wird ebenfalls zur Verfügung gestellt. Zahlreiche Übungsaufgaben mit Lösungen ergänzen das Buch, so dass es als Lehr- und Nachschlagewerk nutzbar ist. Besonders hervorzuheben ist, dass auch balancierte unvollständige Blockanlagen (BUB) erläutert werden und erstmalig eine vollständige Liste kleinster (mit möglichst geringer Anzahl von Blocks) BUB für bis zu v = 25 Behandlungen und Blockgrößen ≤ v/2 im Netz zur Verfügung gestellt wird. Für Sortenversuche sind die BUB allerdings oft nicht nutzbar, weil sie zu viele Wiederholungen erfordern. Dafür haben sich „verallgemeinerte Gitter“ oder alpha-Anlagen bewährt, die ebenfalls behandelt werden.
This volume contains most of the invited and contributed papers presented at the Conference on Robustness of Statistical Methods and Nonparametric Statistics held in the castle oj'Schwerin, Mai 29 - June 4 1983. This conference was organized by the Mathematical Society of the GDR in cooperation with the Society of Physical and Mathematical Biology of the GDR, the GDR-Region of the International Biometric Society and the Academy of Agricultural Sciences of the GDR. All papers included were thoroughly reviewed by scientist listed under the heading "Editorial Collabora- tories*'. Some contributions, we are sorry to report, were not recommended for publi- cation by the rf'vif'wers and do not appear in these proceedings. The editors thank the reviewers for their valuable comments and suggestions. The conference was organizf'd bv a Programme Committee, its chairman was Prof. Dr. Dieter Rasch (Research Centre of Animal Production, Dummerstorf-Rostock). The members of the Programme Committee were Prof. Dr. ,Johannes Adam (Martin-Luther-University Halle) Prof. Dr. Heinz Ahrens (Academy of Sciences of the GDR, Berlin) Doz. Dr. Jana Jureckova (Charles University Praha) Prof. Dr. Moti Lal Tiku (McMaster University, Hamilton, Ontario) The aim of the conference was to discuss several aspects of robustness but mainly to present new results regarding the robustness of classical statistical methods especially tests, confidence estimations, and selection procedures, and to compare their perfor- mance with nonparametric procedures. Robustness in this sens~ is understood as intensivity against. violation of the normal assumption.
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experimental question. Providing a concise introduction to experimental design theory, Optimal Experimental Design with R: Introduces the philosophy of experimental design Provides an easy process for constructing experimental designs and calculating necessary sample size using R programs Teaches by example using a custom made R program package: OPDOE Consisting of detailed, data-rich examples, this book introduces experimenters to the philosophy of experimentation, experimental design, and data collection. It gives researchers and statisticians guidance in the construction of optimum experimental designs using R programs, including sample size calculations, hypothesis testing, and confidence estimation. A final chapter of in-depth theoretical details is included for interested mathematical statisticians.
This volume is the English version of the second edition of the bilingual textbook by Rasch, Verdooren and Gowers (1999). A parallel version in German is available from the same publisher. This book is intended for students and experimental scientists in all disciplines and presumes only elementary statistical knowledge. This prerequisite knowledge is summarised briefly in appendix B. Knowledge of differential and integral calculus is not necessary for the understanding of the text. Matrix notation is explained in Appendix C. As well as the correction of errors, the present edition differs from the first by the introduction of some new sections, such as that on testing the equality of two proportions (Section 3.4.4), and the inclusion of sequential tests. All new material is accompanied by descriptions of the relevant SPSS and CADEMO procedures.
In diesem leicht verstandlich geschriebenen Buch wird Wert darauf gelegt, dass vor Beginn einer Forschungsarbeit eine exakte Fragestellung und ein optimaler Versuchsplan erarbeitet wird, der u.a. auch den minimalen Versuchsumfang fur vorgegebene vertretbare Risiken enthalt. Nach einer Einfuhrung in die Konstruktion von Blockanlagen werden Konfidenzschatzungen, Auswahlverfahren und Tests fur Mittelwerte, Wahrscheinlichkeiten und Varianzen vorgestellt. Neben den bekannten Verfahren sind sequentielle Dreieckstests enthalten, die oft zur Einsparung von Beobachtungen fuhren. Ein Kapitel ist der Varianzanalyse, ein weiteres der Regressions- und Korrelationsanalyse gewidmet. Sowohl fur die Versuchsplanung als auch fur die Auswertung werden kommerzielle Programmpakete eingesetzt."
|
![]() ![]() You may like...
Inquiry-Based Experiments in Chemistry
Valerie Ludwig Lechtanski
Hardcover
R1,029
Discovery Miles 10 290
An Analysis of David Hume's Dialogues…
John Donaldson, Ian Jackson
Hardcover
R707
Discovery Miles 7 070
|