|
Showing 1 - 10 of
10 matches in All Departments
This volume features original contributions and invited review
articles on mathematical statistics, statistical simulation and
experimental design. The selected peer-reviewed contributions
originate from the 8th International Workshop on Simulation held in
Vienna in 2015. The book is intended for mathematical
statisticians, Ph.D. students and statisticians working in
medicine, engineering, pharmacy, psychology, agriculture and other
related fields. The International Workshops on Simulation are
devoted to statistical techniques in stochastic simulation, data
collection, design of scientific experiments and studies
representing broad areas of interest. The first 6 workshops took
place in St. Petersburg, Russia, in 1994 - 2009 and the 7th
workshop was held in Rimini, Italy, in 2013.
Experimental design is often overlooked in the literature of
applied and mathematical statistics: statistics is taught and
understood as merely a collection of methods for analyzing data.
Consequently, experimenters seldom think about optimal design,
including prerequisites such as the necessary sample size needed
for a precise answer for an experimental question. Providing a
concise introduction to experimental design theory, Optimal
Experimental Design with R: Introduces the philosophy of
experimental design Provides an easy process for constructing
experimental designs and calculating necessary sample size using R
programs Teaches by example using a custom made R program package:
OPDOE Consisting of detailed, data-rich examples, this book
introduces experimenters to the philosophy of experimentation,
experimental design, and data collection. It gives researchers and
statisticians guidance in the construction of optimum experimental
designs using R programs, including sample size calculations,
hypothesis testing, and confidence estimation. A final chapter of
in-depth theoretical details is included for interested
mathematical statisticians.
Dieses Buch führt in die angewandte Statistik für
Agrarwissenschaften ein und unterstützt bei der Forschung in der
Pflanzen- und Tierproduktion und im Feldversuchswesen. Es nutzt
ausgiebig das frei verfügbare Programmpaket R: Über das gesamte
Buch hinweg werden im Rahmen umfangreicher Beispiele passende
R-Programmcodes angegeben und erläutert. Die Codes können mit
eigenen Daten kombiniert und so zur Planung und Auswertung eigener
Versuche verwendet werden. So können etwa Wachstumsfunktionen
angepasst, Varianzanalysen berechnet oder optimale Versuchspläne
und minimale Stichprobenumfänge gefunden werden und vieles mehr.
Eine Installationsbeschreibung für R wird ebenfalls zur Verfügung
gestellt. Zahlreiche Übungsaufgaben mit Lösungen ergänzen das
Buch, so dass es als Lehr- und Nachschlagewerk nutzbar ist.
Besonders hervorzuheben ist, dass auch balancierte unvollständige
Blockanlagen (BUB) erläutert werden und erstmalig eine
vollständige Liste kleinster (mit möglichst geringer Anzahl von
Blocks) BUB für bis zu v = 25 Behandlungen und Blockgrößen ≤
v/2 im Netz zur Verfügung gestellt wird. Für Sortenversuche sind
die BUB allerdings oft nicht nutzbar, weil sie zu viele
Wiederholungen erfordern. Dafür haben sich „verallgemeinerte
Gitter“ oder alpha-Anlagen bewährt, die ebenfalls behandelt
werden.
This volume contains most of the invited and contributed papers
presented at the Conference on Robustness of Statistical Methods
and Nonparametric Statistics held in the castle oj'Schwerin, Mai 29
- June 4 1983. This conference was organized by the Mathematical
Society of the GDR in cooperation with the Society of Physical and
Mathematical Biology of the GDR, the GDR-Region of the
International Biometric Society and the Academy of Agricultural
Sciences of the GDR. All papers included were thoroughly reviewed
by scientist listed under the heading "Editorial Collabora-
tories*'. Some contributions, we are sorry to report, were not
recommended for publi- cation by the rf'vif'wers and do not appear
in these proceedings. The editors thank the reviewers for their
valuable comments and suggestions. The conference was organizf'd bv
a Programme Committee, its chairman was Prof. Dr. Dieter Rasch
(Research Centre of Animal Production, Dummerstorf-Rostock). The
members of the Programme Committee were Prof. Dr. ,Johannes Adam
(Martin-Luther-University Halle) Prof. Dr. Heinz Ahrens (Academy of
Sciences of the GDR, Berlin) Doz. Dr. Jana Jureckova (Charles
University Praha) Prof. Dr. Moti Lal Tiku (McMaster University,
Hamilton, Ontario) The aim of the conference was to discuss several
aspects of robustness but mainly to present new results regarding
the robustness of classical statistical methods especially tests,
confidence estimations, and selection procedures, and to compare
their perfor- mance with nonparametric procedures. Robustness in
this sens~ is understood as intensivity against. violation of the
normal assumption.
Experimental design is often overlooked in the literature of
applied and mathematical statistics: statistics is taught and
understood as merely a collection of methods for analyzing data.
Consequently, experimenters seldom think about optimal design,
including prerequisites such as the necessary sample size needed
for a precise answer for an experimental question. Providing a
concise introduction to experimental design theory, Optimal
Experimental Design with R: Introduces the philosophy of
experimental design Provides an easy process for constructing
experimental designs and calculating necessary sample size using R
programs Teaches by example using a custom made R program package:
OPDOE Consisting of detailed, data-rich examples, this book
introduces experimenters to the philosophy of experimentation,
experimental design, and data collection. It gives researchers and
statisticians guidance in the construction of optimum experimental
designs using R programs, including sample size calculations,
hypothesis testing, and confidence estimation. A final chapter of
in-depth theoretical details is included for interested
mathematical statisticians.
This volume is the English version of the second edition of the
bilingual textbook by Rasch, Verdooren and Gowers (1999). A
parallel version in German is available from the same publisher.
This book is intended for students and experimental scientists in
all disciplines and presumes only elementary statistical knowledge.
This prerequisite knowledge is summarised briefly in appendix B.
Knowledge of differential and integral calculus is not necessary
for the understanding of the text. Matrix notation is explained in
Appendix C. As well as the correction of errors, the present
edition differs from the first by the introduction of some new
sections, such as that on testing the equality of two proportions
(Section 3.4.4), and the inclusion of sequential tests. All new
material is accompanied by descriptions of the relevant SPSS and
CADEMO procedures.
In diesem leicht verstandlich geschriebenen Buch wird Wert darauf
gelegt, dass vor Beginn einer Forschungsarbeit eine exakte
Fragestellung und ein optimaler Versuchsplan erarbeitet wird, der
u.a. auch den minimalen Versuchsumfang fur vorgegebene vertretbare
Risiken enthalt. Nach einer Einfuhrung in die Konstruktion von
Blockanlagen werden Konfidenzschatzungen, Auswahlverfahren und
Tests fur Mittelwerte, Wahrscheinlichkeiten und Varianzen
vorgestellt. Neben den bekannten Verfahren sind sequentielle
Dreieckstests enthalten, die oft zur Einsparung von Beobachtungen
fuhren. Ein Kapitel ist der Varianzanalyse, ein weiteres der
Regressions- und Korrelationsanalyse gewidmet. Sowohl fur die
Versuchsplanung als auch fur die Auswertung werden kommerzielle
Programmpakete eingesetzt."
|
You may like...
The Expendables 4
Jason Statham, Sylvester Stallone
Blu-ray disc
R329
Discovery Miles 3 290
|