0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Large Eddy Simulation for Compressible Flows (Paperback, 2009 ed.): Eric Garnier, Nikolaus Adams, P. Sagaut Large Eddy Simulation for Compressible Flows (Paperback, 2009 ed.)
Eric Garnier, Nikolaus Adams, P. Sagaut
R4,230 Discovery Miles 42 300 Ships in 10 - 15 working days

Turbulent ?ows are ubiquitous in most application ?elds, ranging from - gineering to earth sciences and even life sciences. Therefore, simulation of turbulent ?ows has become a key tool in both fundamental and applied - search. The complexity of Navier-Stokes turbulence, which is illustrated by the fact that the number of degrees of freedom of turbulence grows faster 11/4 thanO(Re ), where Re denotes the Reynolds number, renders the Direct Numerical Simulation (DNS) of turbulence inapplicable to most ?ows of - terest. To alleviate this problem, truncated solutions in both frequency and wavenumbermaybesought, whosecomputationalcostismuchlowerandmay ideally be arbitrarily adjusted. The most suitable approach to obtain such a low-cost three-dimensional unsteady simulation of a turbulent ?ow is Large- EddySimulation(LES), whichwaspioneeredtocomputemeteorological?ows in the late 1950s and the early 1960s. One of the main issues raised by LES is a closure problem: because of the non-linearity of the Navier-Stokes equations, the e?ect of unresolved scales must be taken into account to recover a reliable description of resolved scales of motion (Chap. 2). This need to close the governing equations of LES has certainly been the main area of investigation since the 1960s, and numerous closures, alsoreferredtoassubgridmodels, havebeenproposed. Mostexisting subgrid models have been built using simpli?ed viewsof turbulence dynamics, the main physical phenomenon taken into account being the direct kinetic - ergycascade from largeto small scales that is observed in isotropic turbulence and high-Reynolds fully developed turbulent ?ows. The most popular pa- digm for interscale energy transfer modeling is subgrid viscosity (C

Large Eddy Simulation for Compressible Flows (Hardcover, 2009 ed.): Eric Garnier, Nikolaus Adams, P. Sagaut Large Eddy Simulation for Compressible Flows (Hardcover, 2009 ed.)
Eric Garnier, Nikolaus Adams, P. Sagaut
R4,408 Discovery Miles 44 080 Ships in 10 - 15 working days

Turbulent ?ows are ubiquitous in most application ?elds, ranging from - gineering to earth sciences and even life sciences. Therefore, simulation of turbulent ?ows has become a key tool in both fundamental and applied - search. The complexity of Navier-Stokes turbulence, which is illustrated by the fact that the number of degrees of freedom of turbulence grows faster 11/4 thanO(Re ), where Re denotes the Reynolds number, renders the Direct Numerical Simulation (DNS) of turbulence inapplicable to most ?ows of - terest. To alleviate this problem, truncated solutions in both frequency and wavenumbermaybesought, whosecomputationalcostismuchlowerandmay ideally be arbitrarily adjusted. The most suitable approach to obtain such a low-cost three-dimensional unsteady simulation of a turbulent ?ow is Large- EddySimulation(LES), whichwaspioneeredtocomputemeteorological?ows in the late 1950s and the early 1960s. One of the main issues raised by LES is a closure problem: because of the non-linearity of the Navier-Stokes equations, the e?ect of unresolved scales must be taken into account to recover a reliable description of resolved scales of motion (Chap. 2). This need to close the governing equations of LES has certainly been the main area of investigation since the 1960s, and numerous closures, alsoreferredtoassubgridmodels, havebeenproposed. Mostexisting subgrid models have been built using simpli?ed viewsof turbulence dynamics, the main physical phenomenon taken into account being the direct kinetic - ergycascade from largeto small scales that is observed in isotropic turbulence and high-Reynolds fully developed turbulent ?ows. The most popular pa- digm for interscale energy transfer modeling is subgrid viscosity (C

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Mexico In Mzansi
Aiden Pienaar Paperback R360 R255 Discovery Miles 2 550
Bestway Floating Pool Thermometer
R56 Discovery Miles 560
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Prescription: Ice Cream - A Doctor's…
Alastair McAlpine Paperback R350 R249 Discovery Miles 2 490
Dig & Discover: Ancient Egypt - Excavate…
Hinkler Pty Ltd Kit R263 Discovery Miles 2 630
JCB Soft Toe Slip On Safety Boot (Desert…
R1,059 Discovery Miles 10 590
Confronting Apartheid - A Personal…
John Dugard Paperback R320 R250 Discovery Miles 2 500
Tipping Point: Turmoil Or Reform…
Raymond Parsons Paperback R300 R215 Discovery Miles 2 150
Gold Fresh Couture by Moschino EDP 100ml…
R1,506 Discovery Miles 15 060
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950

 

Partners