![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
As discrete mathematics rapidly becomes a required element of undergraduate mathematics programs, algebraic software systems replace compiled languages and are now most often the computational tool of choice. Newcomers to university level mathematics, therefore, must not only grasp the fundamentals of discrete mathematics, they must also learn to use an algebraic manipulator and develop skills in abstract reasoning. Experimental Mathematics with MAPLE uniquely responds to these needs. Following an emerging trend in research, it places abstraction and axiomatization at the end of a learning process that begins with computer experimentation. It introduces the foundations of discrete mathematics and, assuming no previous knowledge of computing, gradually develops basic computational skills using the latest version of the powerful MAPLE software. The author's approach is to expose readers to a large number of concrete computational examples and encourage them to isolate the general from the particular, to synthesize computational results, formulate conjectures, and attempt rigorous proofs. Using this approach, Experimental Mathematics with MAPLE enables readers to build a foundation in discrete mathematics, gain valuable experience with algebraic computing, and develop a familiarity with basic abstract concepts, notation, and jargon. Its engaging style, numerous exercises and examples, and Internet posting of selected solutions and MAPLE worksheets make this text ideal for use both in the classroom and for self-study.
This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student. The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae and structure a definition. Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150 of them have complete solutions, to facilitate self-study. "Mathematical Writing" will be of interest to all mathematics students who want to raise the quality of their coursework, reports, exams, and dissertations.
As discrete mathematics rapidly becomes a required element of undergraduate mathematics programs, algebraic software systems replace compiled languages and are now most often the computational tool of choice. Newcomers to university level mathematics, therefore, must not only grasp the fundamentals of discrete mathematics, they must also learn to use an algebraic manipulator and develop skills in abstract reasoning.
|
![]() ![]() You may like...
Wonder Drug - 7 Scientifically Proven…
Stephen Trzeciak, Anthony Mazzarelli
Paperback
The Solar Activity Cycle - Physical…
Andre Balogh, Hugh Hudson, …
Hardcover
R4,524
Discovery Miles 45 240
|