0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Wireless Communications for Power Substations: RF Characterization and Modeling (Hardcover, 1st ed. 2019): Basile L. Agba,... Wireless Communications for Power Substations: RF Characterization and Modeling (Hardcover, 1st ed. 2019)
Basile L. Agba, Fabien Sacuto, Minh Au, Fabrice Labeau, Francois Gagnon
R4,109 Discovery Miles 41 090 Ships in 10 - 15 working days

This book consists of the identification, characterization, and modeling of electromagnetic interferences in substations for the deployment of wireless sensor networks. The authors present in chapter 3 the measurement setup to record sequences of impulsive noise samples in the ISM band of interest. The setup can measure substation impulsive noise, in wide band, with enough samples per time window and enough precision to allow a statistical study of the noise. During the measurement campaign, the authors recorded around 120 noise sequences in different substations and for four ranges of equipment voltage, which are 25 kV, 230 kV, 315 kV and 735 kV. A characterization process is proposed, by which physical characteristics of partial discharge can be measured in terms of first- and second-order statistics. From the measurement campaign, the authors infer the characteristics of substation impulsive noise as a function of the substation equipment voltage, and can provide representative parameters for the four voltage ranges and for several existing impulsive noise models. The authors investigate in chapters 4 and 5 the modeling of electromagnetic interferences caused by partial discharge sources. First, the authors propose a complete and coherent approach model that links physical characteristics of high-voltage installations to the induced radio-interference spectra of partial discharge sources. The goodness-of-fit of the proposed physical model has been measured based on some interesting statistical metrics. This allows one to assess the effectiveness of the authors' approach in terms of first- and second-order statistics. Chapter 6 proposes a model based on statistical approach. Indeed, substation impulsive noise is composed of correlated impulses, which would require models with memory in order to replicate a similar correlation. Among different models, we have configured a Partitioned Markov Chain (PMC) with 19 states (one state for the background noise and 18 states for the impulse); this Markov-Gaussian model is able to generate impulsive noise with correlated impulse samples. The correlation is observable on the impulse duration and the power spectrum of the impulses. Our PMC model provides characteristics that are more similar to the characteristics of substation impulsive noise in comparison with other models, in terms of time and frequency response, as well as Probability Density Functions (PDF). Although PMC represents reliably substation impulsive noise, the model remains complex in terms of parameter estimation due to a large number of Markov states, which can be an obstacle for future wireless system design. In order to simplify the model, the authors decrease the number of states to 7 by assigning one state to the background noise and 6 states to the impulse and we call this model PMC-6. PMC-6 can generate realistic impulses and can be easily implemented in a receiver in order to mitigate substation impulsive noise. Representative parameters are provided in order to replicate substation impulsive noise for different voltage ranges (25-735 kV). Chapter 7, a generalized radio-noise model for substations is proposed, in which there are many discharges sources that are randomly distributed over space and time according to the Poisson field of interferers approach. This allows for the identification of some interesting statistical properties of moments, cumulants and probability distributions. These can, in turn, be utilized in signal processing algorithms for rapid partial discharge's identification, localization, and impulsive noise mitigation techniques in wireless communications in substations. The primary audience for this book is the electrical and power engineering industry, electricity providers and companies who are interested in substation automation systems using wireless communication technologies for smart grid applications. Researchers, engineers and students studying and working in wireless communication will also want to buy this book as a reference.

Wireless Communications for Power Substations: RF Characterization and Modeling (Paperback, Softcover reprint of the original... Wireless Communications for Power Substations: RF Characterization and Modeling (Paperback, Softcover reprint of the original 1st ed. 2019)
Basile L. Agba, Fabien Sacuto, Minh Au, Fabrice Labeau, Francois Gagnon
R4,102 Discovery Miles 41 020 Ships in 10 - 15 working days

This book consists of the identification, characterization, and modeling of electromagnetic interferences in substations for the deployment of wireless sensor networks. The authors present in chapter 3 the measurement setup to record sequences of impulsive noise samples in the ISM band of interest. The setup can measure substation impulsive noise, in wide band, with enough samples per time window and enough precision to allow a statistical study of the noise. During the measurement campaign, the authors recorded around 120 noise sequences in different substations and for four ranges of equipment voltage, which are 25 kV, 230 kV, 315 kV and 735 kV. A characterization process is proposed, by which physical characteristics of partial discharge can be measured in terms of first- and second-order statistics. From the measurement campaign, the authors infer the characteristics of substation impulsive noise as a function of the substation equipment voltage, and can provide representative parameters for the four voltage ranges and for several existing impulsive noise models. The authors investigate in chapters 4 and 5 the modeling of electromagnetic interferences caused by partial discharge sources. First, the authors propose a complete and coherent approach model that links physical characteristics of high-voltage installations to the induced radio-interference spectra of partial discharge sources. The goodness-of-fit of the proposed physical model has been measured based on some interesting statistical metrics. This allows one to assess the effectiveness of the authors' approach in terms of first- and second-order statistics. Chapter 6 proposes a model based on statistical approach. Indeed, substation impulsive noise is composed of correlated impulses, which would require models with memory in order to replicate a similar correlation. Among different models, we have configured a Partitioned Markov Chain (PMC) with 19 states (one state for the background noise and 18 states for the impulse); this Markov-Gaussian model is able to generate impulsive noise with correlated impulse samples. The correlation is observable on the impulse duration and the power spectrum of the impulses. Our PMC model provides characteristics that are more similar to the characteristics of substation impulsive noise in comparison with other models, in terms of time and frequency response, as well as Probability Density Functions (PDF). Although PMC represents reliably substation impulsive noise, the model remains complex in terms of parameter estimation due to a large number of Markov states, which can be an obstacle for future wireless system design. In order to simplify the model, the authors decrease the number of states to 7 by assigning one state to the background noise and 6 states to the impulse and we call this model PMC-6. PMC-6 can generate realistic impulses and can be easily implemented in a receiver in order to mitigate substation impulsive noise. Representative parameters are provided in order to replicate substation impulsive noise for different voltage ranges (25-735 kV). Chapter 7, a generalized radio-noise model for substations is proposed, in which there are many discharges sources that are randomly distributed over space and time according to the Poisson field of interferers approach. This allows for the identification of some interesting statistical properties of moments, cumulants and probability distributions. These can, in turn, be utilized in signal processing algorithms for rapid partial discharge's identification, localization, and impulsive noise mitigation techniques in wireless communications in substations. The primary audience for this book is the electrical and power engineering industry, electricity providers and companies who are interested in substation automation systems using wireless communication technologies for smart grid applications. Researchers, engineers and students studying and working in wireless communication will also want to buy this book as a reference.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
First Observation of Coherent Elastic…
Bjorn Scholz Hardcover R2,873 Discovery Miles 28 730
The Humble Investor - How To Find A…
Daniel Rasmussen Paperback R750 R646 Discovery Miles 6 460
Incarnation: The Person and Life of…
Thomas F Torrance Hardcover R1,345 Discovery Miles 13 450
Crypto Investing Strategies for…
David Olarinoye Hardcover R650 Discovery Miles 6 500
The Tao of Pooh & The Te of Piglet
Benjamin Hoff Paperback  (1)
R385 R344 Discovery Miles 3 440
Observations on the Appeal from the New…
Brooke Boothby Paperback R528 Discovery Miles 5 280
South African Employment Relations…
P.S. Nel, Monica Kirsten, … Paperback  (1)
R739 Discovery Miles 7 390
A Brief History of Theology - From the…
Derek Johnston Hardcover R3,549 Discovery Miles 35 490
Township Violence And The End Of…
Gary Kynoch Paperback R330 R305 Discovery Miles 3 050
We Are Still Human - And Work Shouldn't…
Brad Shorkend, Andy Golding Paperback  (2)
R295 R264 Discovery Miles 2 640

 

Partners