![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
The past fifteen years has witnessed an explosive growth in the fundamental research and applications of artificial neural networks (ANNs) and fuzzy logic (FL). The main impetus behind this growth has been the ability of such methods to offer solutions not amenable to conventional techniques, particularly in application domains involving pattern recognition, prediction and control. Although the origins of ANNs and FL may be traced back to the 1940s and 1960s, respectively, the most rapid progress has only been achieved in the last fifteen years. This has been due to significant theoretical advances in our understanding of ANNs and FL, complemented by major technological developments in high-speed computing. In geophysics, ANNs and FL have enjoyed significant success and are now employed routinely in the following areas (amongst others): 1. Exploration Seismology. (a) Seismic data processing (trace editing; first break picking; deconvolution and multiple suppression; wavelet estimation; velocity analysis; noise identification/reduction; statics analysis; dataset matching/prediction, attenuation), (b) AVO analysis, (c) Chimneys, (d) Compression I dimensionality reduction, (e) Shear-wave analysis, (f) Interpretation (event tracking; lithology prediction and well-log analysis; prospect appraisal; hydrocarbon prediction; inversion; reservoir characterisation; quality assessment; tomography). 2. Earthquake Seismology and Subterranean Nuclear Explosions. 3. Mineral Exploration. 4. Electromagnetic I Potential Field Exploration. (a) Electromagnetic methods, (b) Potential field methods, (c) Ground penetrating radar, (d) Remote sensing, (e) inversion.
In the middle of the 20th century, Genrich Altshuller, a Russian engineer, analysed hundreds of thousands of patents and scientific publications. From this analysis, he developed TRIZ (G. Altshuller, "40 Principles: TRIZ Keys to Technical Innovation. TRIZ Tools," Volume 1, First Edition, Technical Innovation Center, Inc. , Worcester, MA, January 1998; Y. Salamatov, "TRIZ: The Right Solution at the Right Time. A Guide to Innovative Problem Solving. " Insytec B. V. , 1999), the theory of inventive problem solving, together with a series of practical tools for helping engineers solving technical problems. Among these tools and theories, the substance-field theory gives a structured way of representing problems, the patterns of evolution show the lifecycle of technical systems, the contradiction matrix tells you how to resolve technical contradictions, using the forty principles that describe common ways of improving technical systems. For example, if you want to increase the strength of a device, without adding too much extra weight to it, the contradiction matrix tells you that you can use "Principle 1: Segmentation," or "Principle 8: Counterweight," or "Principle 15: Dynamicity," or "Principle 40: Composite Materials. " I really like two particular ones: "Principle 1: Segmentation," and Principle 15: Dynamicity. " "Segmentation" shows how systems evolve from an initial monolithic form into a set of independent parts, then eventually increasing the number of parts until each part becomes small enough that it cannot be identified anymore.
The past fifteen years has witnessed an explosive growth in the fundamental research and applications of artificial neural networks (ANNs) and fuzzy logic (FL). The main impetus behind this growth has been the ability of such methods to offer solutions not amenable to conventional techniques, particularly in application domains involving pattern recognition, prediction and control. Although the origins of ANNs and FL may be traced back to the 1940s and 1960s, respectively, the most rapid progress has only been achieved in the last fifteen years. This has been due to significant theoretical advances in our understanding of ANNs and FL, complemented by major technological developments in high-speed computing. In geophysics, ANNs and FL have enjoyed significant success and are now employed routinely in the following areas (amongst others): 1. Exploration Seismology. (a) Seismic data processing (trace editing; first break picking; deconvolution and multiple suppression; wavelet estimation; velocity analysis; noise identification/reduction; statics analysis; dataset matching/prediction, attenuation), (b) AVO analysis, (c) Chimneys, (d) Compression I dimensionality reduction, (e) Shear-wave analysis, (f) Interpretation (event tracking; lithology prediction and well-log analysis; prospect appraisal; hydrocarbon prediction; inversion; reservoir characterisation; quality assessment; tomography). 2. Earthquake Seismology and Subterranean Nuclear Explosions. 3. Mineral Exploration. 4. Electromagnetic I Potential Field Exploration. (a) Electromagnetic methods, (b) Potential field methods, (c) Ground penetrating radar, (d) Remote sensing, (e) inversion.
|
![]() ![]() You may like...
Novel Solutions to Water Pollution
Satinda Ahuja, Kiril Hristovski
Hardcover
R5,934
Discovery Miles 59 340
Handbook of Research on Innovation and…
Mohammad Nabil Almunawar, Muhammad Anshari Ali, …
Hardcover
R7,034
Discovery Miles 70 340
|