Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 36 matches in All Departments
Today's customer-oriented operational philosophy has forced organizations to face the challenge of transforming into digital businesses to meet growing customer demand. The reality is that power is shifting from institutions to customers, so it's up to providers to master both customer experience and digital operational excellence. However, despite this turn toward digitalization, many businesses struggle to manage their technology base strategically. Disruptive Innovation and Emerging Technologies for Business Excellence in the Service Sector provides an in-depth exploration of options that can assist organizations in developing a consistent and coherent view of various drivers in order to shape their markets and operations as well as how disruptive innovations and emerging technologies can contribute to businesses now and in the future. Covering a wide range of topics such as sustainable transportation and customer service experiences, it is ideal for industry professionals, researchers, academicians, instructors, decision makers, and students.
In educational institutions, outcome-based education (OBE) remains crucial in measuring how certain teaching techniques are impacting the students' ability to learn. Currently, these changes in students are mapped by analyzing the objectives and outcomes of certain learning processes. International accreditation agencies and quality assessment networks are all focusing on mapping between outcomes and objectives. The need of assessment tools arises that can provide a genuine mapping in the global context so that students or learners can achieve expected objectives. Assessment Tools for Mapping Learning Outcomes With Learning Objectives is a pivotal reference source that provides vital research on the implementation of quality assessment methods for measuring the outcomes of select learning processes on students. While highlighting topics such as quality assessment, effective employability, and student learning objectives, this book is ideally designed for students, administrators, policymakers, researchers, academicians, practitioners, managers, executives, strategists, and educators seeking current research on the application of modern mapping tools for assessing student learning outcomes in higher education.
Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
This book provides a comprehensive overview of the theory and praxis of Big Data Analytics and how these are used to extract cognition-related information from social media and literary texts. It presents analytics that transcends the borders of discipline-specific academic research and focuses on knowledge extraction, prediction, and decision-making in the context of individual, social, and national development. The content is divided into three main sections: the first of which discusses various approaches associated with Big Data Analytics, while the second addresses the security and privacy of big data in social media, and the last focuses on the literary text as the literary data in Big Data Analytics. Sharing valuable insights into the etiology behind human cognition and its reflection in social media and literary texts, the book benefits all those interested in analytics that can be applied to literature, history, philosophy, linguistics, literary theory, media & communication studies and computational/digital humanities.
The Covid-19 pandemic has been a learning experience for all in one way or other, especially for those who are engaged in teaching-learning through online and blended learning techniques and tools. This learning experience adds value and a new dimension to the practices and methods already adopted towards achieving sustainable development goal (SDG) 4 of the 17 sustainable development goals formulated by UNESCO. SDG 4 is designed for higher education and highlights the overview, importance, and ways of achieving sustainable goals in higher education. This book discusses and enumerates best practices in the assessment of student learning outcomes, the mapping of student learning outcomes with learning objectives, and the development of employability skills in young minds in order to achieve SDG 4 for universities globally. The book is ideal for students, researchers, practitioners, policymakers, and other stakeholders who are involved in higher education.
Brain and Behavior Computing offers insights into the functions of the human brain. This book provides an emphasis on brain and behavior computing with different modalities available such as signal processing, image processing, data sciences, statistics further it includes fundamental, mathematical model, algorithms, case studies, and future research scopes. It further illustrates brain signal sources and how the brain signal can process, manipulate, and transform in different domains allowing researchers and professionals to extract information about the physiological condition of the brain. Emphasizes real challenges in brain signal processing for a variety of applications for analysis, classification, and clustering. Discusses data sciences and its applications in brain computing visualization. Covers all the most recent tools for analysing the brain and it’s working. Describes brain modeling and all possible machine learning methods and their uses. Augments the use of data mining and machine learning to brain computer interface (BCI) devices. Includes case studies and actual simulation examples. This book is aimed at researchers, professionals, and graduate students in image processing and computer vision, biomedical engineering, signal processing, and brain and behavior computing.
This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
Brain and Behavior Computing offers insights into the functions of the human brain. This book provides an emphasis on brain and behavior computing with different modalities available such as signal processing, image processing, data sciences, statistics further it includes fundamental, mathematical model, algorithms, case studies, and future research scopes. It further illustrates brain signal sources and how the brain signal can process, manipulate, and transform in different domains allowing researchers and professionals to extract information about the physiological condition of the brain. Emphasizes real challenges in brain signal processing for a variety of applications for analysis, classification, and clustering. Discusses data sciences and its applications in brain computing visualization. Covers all the most recent tools for analysing the brain and it's working. Describes brain modeling and all possible machine learning methods and their uses. Augments the use of data mining and machine learning to brain computer interface (BCI) devices. Includes case studies and actual simulation examples. This book is aimed at researchers, professionals, and graduate students in image processing and computer vision, biomedical engineering, signal processing, and brain and behavior computing.
Provides the details of state-of-the-art machine learning methods used in VLSI Design. Discusses hardware implementation and device modeling pertaining to machine learning algorithms. Explores machine learning for various VLSI architectures and reconfigurable computing. Illustrate latest techniques for device size and feature optimization. Highlight latest case studies and reviews of the methods used for hardware implementation.
Artificial intelligence (AI) and machine learning (ML) techniques play an important role in our daily lives by enhancing predictions and decision-making for the public in several fields such as financial services, real estate business, consumer goods, social media, etc. Despite several studies that have proved the efficacy of AI/ML tools in providing improved healthcare solutions, it has not gained the trust of health-care practitioners and medical scientists. This is due to poor reporting of the technology, variability in medical data, small datasets, and lack of standard guidelines for application of AI. Therefore, the development of new AI/ML tools for various domains of medicine is an ongoing field of research. Machine Learning in Healthcare: Fundamentals and Recent Applications discusses how to build various ML algorithms and how they can be applied to improve healthcare systems. Healthcare applications of AI are innumerable: medical data analysis, early detection and diagnosis of disease, providing objective-based evidence to reduce human errors, curtailing inter- and intra-observer errors, risk identification and interventions for healthcare management, real-time health monitoring, assisting clinicians and patients for selecting appropriate medications, and evaluating drug responses. Extensive demonstrations and discussion on the various principles of machine learning and its application in healthcare is provided, along with solved examples and exercises. This text is ideal for readers interested in machine learning without any background knowledge and looking to implement machine-learning models for healthcare systems.
The term "data" being mostly used, experimented, analyzed, and researched, "Data Science and its Applications" finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications.
Covers different modalities for improvement of healthcare system Describes implementation strategies and their applications in diagnosis of modalities Reviews automatic identification of related disorders using medical modality Discusses bio-potential signals and their appropriate analysis for studying different disorders Includes case studies, real-time examples and research directions
Computer-aided design (CAD) plays a key role in improving biomedical systems for various applications. It also helps in the detection, identification, predication, analysis, and classification of diseases, in the management of chronic conditions, and in the delivery of health services. This book discusses the uses of CAD to solve real-world problems and challenges in biomedical systems with the help of appropriate case studies and research simulation results. Aiming to overcome the gap between CAD and biomedical science, it describes behaviors, concepts, fundamentals, principles, case studies, and future directions for research, including the automatic identification of related disorders using CAD. Features: Proposes CAD for the study of biomedical signals to understand physiology and to improve healthcare systems' ability to diagnose and identify health disorders. Presents concepts of CAD for biomedical modalities in different disorders. Discusses design and simulation examples, issues, and challenges. Illustrates bio-potential signals and their appropriate use in studying different disorders. Includes case studies, practical examples, and research directions. Computer-Aided Design and Diagnosis Methods for Biometrical Applications is aimed at researchers, graduate students in biomedical engineering, image processing, biomedical technology, medical imaging, and health informatics.
This book examines the use of biomedical signal processing-EEG, EMG, and ECG-in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
This book provides a framework for robust and novel biometric techniques, along with implementation and design strategies. The theory, principles, pragmatic and modern methods, and future directions of biometrics are presented, along with in-depth coverage of biometric applications in driverless cars, automated and AI-based systems, IoT, and wearable devices. Additional coverage includes computer vision and pattern recognition, cybersecurity, cognitive computing, soft biometrics, and the social impact of biometric technology. The book will be a valuable reference for researchers, faculty, and practicing professionals working in biometrics and related fields, such as image processing, computer vision, and artificial intelligence. Highlights robust and novel biometrics techniques Provides implementation strategies and future research directions in the field of biometrics Includes case studies and emerging applications
This book provides a comprehensive overview of the theory and praxis of Big Data Analytics and how these are used to extract cognition-related information from social media and literary texts. It presents analytics that transcends the borders of discipline-specific academic research and focuses on knowledge extraction, prediction, and decision-making in the context of individual, social, and national development. The content is divided into three main sections: the first of which discusses various approaches associated with Big Data Analytics, while the second addresses the security and privacy of big data in social media, and the last focuses on the literary text as the literary data in Big Data Analytics. Sharing valuable insights into the etiology behind human cognition and its reflection in social media and literary texts, the book benefits all those interested in analytics that can be applied to literature, history, philosophy, linguistics, literary theory, media & communication studies and computational/digital humanities.
Artificial Intelligence-Based Brain Computer Interface provides concepts of AI for the modeling of non-invasive modalities of medical signals such as EEG, MRI and FMRI. These modalities and their AI-based analysis are employed in BCI and related applications. The book emphasizes the real challenges in non-invasive input due to the complex nature of the human brain and for a variety of applications for analysis, classification and identification of different mental states. Each chapter starts with a description of a non-invasive input example and the need and motivation of the associated AI methods, along with discussions to connect the technology through BCI. Major topics include different AI methods/techniques such as Deep Neural Networks and Machine Learning algorithms for different non-invasive modalities such as EEG, MRI, FMRI for improving the diagnosis and prognosis of numerous disorders of the nervous system, cardiovascular system, musculoskeletal system, respiratory system and various organs of the body. The book also covers applications of AI in the management of chronic conditions, databases, and in the delivery of health services. |
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
(2)
Gangster - Ware Verhale Van Albei Kante…
Carla van der Spuy
Paperback
|